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Abstract— As technology grows, higher frequency signals 

are required to be processed in various applications. In order 

to digitize such signals, conventional analog to digital 

convertors are facing implementation challenges due to the 

higher sampling rates. Hence, lower sampling rates (i.e., sub-

Nyquist) are considered to be cost efficient. A well-known 

approach is to consider sparse signals that have fewer non-

zero frequency components compared to the highest 

frequency component. For the prior knowledge of the sparse 

positions, well-established methods already exist. However, 

there are applications where such information is not 

available. For such cases, a number of approaches have 

recently been proposed. In this paper, we propose several 

random sampling recovery algorithms which do not require 

any anti-aliasing filter. Moreover, we offer certain conditions 

under which these recovery techniques converge to the signal. 

Finally, we also confirm the performance of the above 

methods through extensive simulations. 

Index Terms— Sparse Signals, sub-Nyquist Sampling, 

Random sampling, Compressed Sensing, Analog to Digital 

Convertors. 

I. INTRODUCTION 

The uniform sampling theorem states that for low pass 

signals, we need a sampling rate that is at least twice the 

highest frequency component of the signal. There are 

various applications where this rate is costly to achieve, 

due to the increase of the bandwidth and the complexity of 

the implementation. 

Landau ‎[1] showed that the necessary sampling rate for 

the reconstruction of the multiband signals is at least twice 

the total length of the occupied bandwidth. The target of 

sub-Nyquist sampling is to reconstruct a signal with a 

sampling rate as low as the Landau rate. Moreover, it has 

been shown in ‎[2]-‎[3] that for discrete sparse random 

signals, we need at least O(k log(n/k)) samples per frame, 

where k is the sparsity number and n is the signal frame 

length. There are cases where we know the position of the 

occupied bands in the frequency domain, i.e., the spectral 

support. The spectral support information significantly 

helps in the reconstruction of the signal from its sub-

Nyquist samples. Several efforts have been done to achieve 

the Landau rate using the spectral support information ‎[4]-

‎[26]. However, if we do not know the spectral support, the 

Landau rate is a challenging bound, and the recovery 

methods usually need to sample at a multiple of the Landau 

rate ‎[12]-‎[25]-‎[27]. Note that for sparse signals, a multiple 

of the landau rate can still be much less than the Nyquist 

rate. 

As an application of random sampling, we consider 

Analog to Digital Converters (ADCs) for multi-band 

signals. In a radio communication system, to process the 

received signal, a demodulation technique is necessary to 

be used before the ADC. This demodulation becomes hard 

and expensive to implement where multiple carriers are 

needed to be scanned. This becomes harder for the case of 

unknown carriers (e.g., military surveillance, radar, and 

medical imaging applications), and even harder for time-

varying carriers (e.g., frequency hopping). Since digital 

technology is much simpler than the analog equivalent, we 

would like to digitize the RF spectrum prior to the 

demodulation stage. However, the Nyquist rate required for 

digitizing the RF signals is too high, which increases the 

complexity of the ADC; to address this issue we need to 

design a sub-Nyquist ADC. 

The sub-Nyquist sampling has become very popular in 

the last decade; Compressed Sensing (CS) ‎[2]-‎[3], ‎[12]-

‎[19]-‎[23] is one approach, and random sampling ‎[5]-‎[11]  is 

another one. The CS method exploits the sparsity property 

for recovery from a set of linear measurements. A signal is 

called sparse if most of its coefficients are zero in some 

domain, such as Discrete Cosine Transform (DCT), 

Discrete Wavelet Transform (DWT) or Discrete Fourier 

Transform (DFT) ‎[2]-‎[3]. If a signal has more than 50 

percent nonzero coefficients, typically the signal is called 

dense. For continuous signals such as RF signals, sparsity 

is defined when the total occupied bandwidth is much 

lower than the total band (from the lowest frequency 

component to the highest frequency component). Sparse 

signal processing has found enormous applications in a 

broad range of research fields such as spectrum 

sensing ‎[11]-‎[12], sparse channel estimation ‎[13], direction 

of arrival estimation ‎[14], detection of radar signals ‎[15], 

and face recognition ‎[16].  

Various CS recovery algorithms have been proposed in 

the literature. The very first techniques were based on L1 

minimization such as Basis Pursuit (BP) ‎[17], and Least 

Absolute Shrinkage and Selection Operator (LASSO) ‎[18], 

which achieve high precision recovery at the cost of 

remarkable computational complexity. The greedy 

algorithms were then suggested to speed up the recovery 

procedure at the expense of accuracy. Orthogonal Matching 

Pursuit (OMP) ‎[19] and COSAMP ‎[20] are the well-known 

examples of this group. The iterative thresholding 



techniques such as IST ‎[21] and IHT ‎[22] apply a simple 

recursive relation to present a fast estimation of the signal 

vector with acceptable accuracy. 

A number of ADCs have been designed based on CS to 

work at sub-Nyquist rate. In ‎[23], an ADC system is 

offered and implemented on hardware ‎[23]-‎[24]. In this 

system, a random demodulation technique which 

demodulates the signal with a high-rate pseudo-noise is 

applied on the signal followed by an anti-aliasing filter and 

a sub-Nyquist uniform sampler. The recovery of the 

sampled signal is feasible by applying CS recovery 

algorithms.  

Another CS based recovery technique is proposed 

in ‎[25] which exploits the periodic nonuniform sampling 

using   independent uniform samplers with random time 

delays. Modulated Wideband Converter (MWC) ‎[26], ‎[27] 

combines the ideas of the random demodulation and 

multicoset sampling techniques. This method modulates the 

signal in M parallel channels with different pseudo-noises. 

It uses an anti-aliasing filter and samples the output of each 

channel uniformly with a sampling rate relatively close to 

the Landau bound. 

The random sampling technique can also exploit the 

sparsity of a signal at the sub-Nyquist rates. The advantage 

of random sampling is that we do not need an anti-aliasing 

filter besides the fact that we are using a sub-Nyquist rate. 

A hardware design for random sampling is proposed 

in ‎[28]-‎[29] using analog multiplexers and an array of 

switched capacitors or sample-and-hold devices.  

In this paper, we aim to address the sub-Nyquist 

sampling problem based on random sampling of sparse 

signals. We use a variation of an algorithm developed in 

our laboratory ‎[11], ‎[30], ‎[31],  for the recovery. We also 

give a formal proof for the convergence of the algorithm. 

The performance of the proposed technique and its 

robustness against noise is verified through simulations of 

synthetic and real signals.  

The rest of this paper is organized as follows: Section II 

discusses the useful characteristics of random sampling and 

provides essential mathematical formulation. Section III is the 

main section where we propose our reconstruction and its 

convergence proof. Section IV is related to the algorithms and 

parameter settings. Section V includes numerical evaluations 

and simulation results. Finally, Section VI concludes the 

paper.  

II. THEORY OF RANDOM SAMPLING 

In this section, we analyze the characteristics of random 

sampling and demonstrate how we can use it as a sub-Nyquist 

sampling for sparse signals. ‎Fig. 1.  illustrates the result of 

uniform and random sampling of a sparse signal (S) in the 

DFT domain. ‎Fig. 1. (a) represents a typical sparse signal (S) 

with the highest frequency component of 9KHz and total 

bandwidth of 2.5KHz. In this case, the Nyquist rate becomes 

18 KHz and the Landau rate is 5 KHz; ‎Fig. 1.  (b) 

demonstrates the result of a uniformly upsampled version of 

S at 25 KHz; similarly, ‎Fig. 1. (c) is the uniformly 

downsampled version of S at 15 KHz. The signal in ‎Fig. 1. 

(d) represents the result of random sampling of S at the 

average rate of 15 KHz.  In contrast to ‎Fig. 1. (b), the signal 

shown in ‎Fig. 1. (c) shows the aliasing effect, i.e., the 

interference of the high frequency components as a result of 

sub-Nyquist sampling. 

 

Fig. 1.   (a)  The main signal, (b) uniformly upsampled, (c) uniformly 
downsampled (d) randomly sampled at the same downsampled sub-

Nyquist rate. 

Although ‎Fig. 1. (d) is associated with a sub-Nyquist 

sampling, all the frequency components are visible and 

only affected by an additive noise. This figure shows that 

random sampling preserves the sparsity pattern of the 

signal buried in a background noise.  

To show this formally, suppose that  ( ) is the input 

signal and   ( ) is the signal randomly sampled with 

uniform distribution. In other words, 

  ( )  ∑ (    ) ( )

 

   

  ( ) ( )   (1)   

where   ’s‎ are‎ i.i.d. random variables with uniform 

distribution and  ( ) denotes a random Dirac comb 

function, i.e.,  ( )  ∑  (    )
 
   , and   denotes the 

 



total number of samples. Also note that throughout this 

paper, subscript   for any function   ( ) indicates the 

random samples of  ( ). 

 

It is shown in ‎[32]-‎[33] and ‎[5]‎[5] that for  random 

sampling with uniform distribution and     ,  ( ) is a 

stationary stochastic process and its power spectrum is:  

  ( )     ( )    

where   is the sampling rate (the average number of 

samples in a unit time interval). If  ( ) is a stationary 

stochastic process,   ( ) will become a stationary 

stochastic process and: 

   
( )    ( )    ( )      ( )        (2)         

 

where    
( ) and   ( ) denote the power spectra of   ( ) 

and  , respectively.    denotes the total power of the 

signal  ( ) derived from the integral of   ( ). Since     is 

a constant number, it represents the spectrum of a zero-

mean white noise; this explains the shape shown in ‎Fig. 1. 

(d). Hence,   ( ) can be represented as: 

 

  ( )    ( )   ( ) (3)    

 

where  ( ), referred to as sampling noise, is a white noise 

generated due to random sampling with the variance of 

   .  

Before proving the convergence of the Iterative 

Method with Adaptive Thresholding (IMAT), we present a 

number of lemmas and theorems. Assuming uniform 

distribution for the samples,   ’s,‎ we‎ analyze‎ the‎ Fourier 

transform of the comb function. It is easy to show that the 

Fourier transform of the comb function,  ( ), is a 

stochastic process in the form of  ( )  ∑          
    

characterized in the following lemma. 

Lemma 1: The Fourier transform of the comb function 

is a non-stationary stochastic process in the form of: 

 ( )   ̂( )    ( ) (4)    

where  ̂( ) is a stationary zero mean white Gaussian 

process with autocorrelation: 

  ̂( )    ( ) 

and   is the sampling rate. 

The proof of this lemma is straightforward. 

Now suppose that  ( ) is a deterministic signal, the 

Fourier transform of   ( ) yields: 

  ( )   ( )   ( ) 

 

The following theorem clarifies the statistical 

characteristics of   ( ). 

Theorem 1: If  ( ) is a deterministic signal, then the 

Fourier transform of its random samples,   ( ), would be a 

stochastic process in the form of: 

 

  ( )    ( )    ( ) (5)   

 

where   is the sampling rate,  ( ) is the Fourier transform 

of  ( ) and   ( ) is a stationary Gaussian process with the 

power spectrum: 

   
( )   | (  )|           (6)    

Proof: According to Lemma 1, we would have: 

  ( )  [ ̂( )    ( )]   ( )    ( )    ( ) 

 

where   ( )   ̂( )   ( ). According to Lemma 1,  

 ̂( ) is a stationary Gaussian process; hence, by the fact 

that Gaussian distribution is preserved under linear 

transformation,   ( ) will become Gaussian and it suffices 

to compute its power spectrum. First, the autocorrelation of 

  ( ) is as: 

   
( )    ̂( )   ( )   (  )̅̅ ̅̅ ̅̅ ̅̅ ̅

   ( )   ( )   (  )̅̅ ̅̅ ̅̅ ̅̅ ̅

   ( )   (  )̅̅ ̅̅ ̅̅ ̅̅ ̅ (7)  

 

The power spectrum of   ( ) can be obtained as: 

   
( )    (  ) (  )̅̅ ̅̅ ̅̅ ̅̅   | (  )|  

  

 

According to the previous theorem,   ( ) at each 

frequency   is a Gaussian random variable with the 

variance:  

 

      
 ∫    

( )  
 

  

  ∫ | ( )|   
 

  

     

(8)   

 

According to ‎(5) and ‎(8),   ( ) consists of the signal 

  ( ) contaminated by a Gaussian noise,   ( ), with 

variance       , which confirms the results for the 

uniformly distributed stochastic point process given in ‎(2). 

Moreover, we know that the magnitude of a zero-mean 

Gaussian variable with the variance of     is less than    

with the probability of  ( ), where   is the cumulative 

normal distribution function ‎[34]. Thus, the signal   ( ) 

can be extracted from   ( ) by thresholding it as follows: 

  ( )  {
        | |     
                        

 (9)   

 

where: 

     √        

 

  is chosen to be    ( ), and   is the acceptable 

probability for each noise component to be removed. For 

example,   should be 2.58 for 99% confidence. 

Another useful property of   ( ) is its ergodicity 

which is investigated in the following lemma. 

Lemma 2: If  ( ) is absolutely integrable, then the 

stochastic process  ( ) will be ergodic.  

The proof of this lemma follows from the fact that  ( ) 

is a Gaussian process which is ergodic if and only if its 

autocorrelation is absolutely integrable. The proof is 

included in the appendix for completeness. 



III. THE PROPOSED RECOVERY METHOD 

In this section, we use the foundation provided in 

Section II and propose an iterative algorithm for sparse 

reconstruction of randomly sampled signals. According 

to ‎Fig. 1. (d), random sampling preserves the sparsity 

pattern of the original signal and only a background white 

noise is added to the original signal; this suggests a 

thresholding technique for the recovery. Before detailed 

explanation, we demonstrate a simple pseudo-code of the 

Iterative Method of Adaptive Thresholdin (IMAT) as the 

core of our approach. 

The sampling mask in the following algorithms 

represents a binary vector which has a value of 1 where 

there are samples and 0 where there are no samples.  

 

Algorithm 1: Iterative Method with Adaptive 

Thresholding (IMAT) 

 The capital letter for each symbol refers to the Fourier 

transform of the signal represented by a small letter.  

  ( ) for any signal   means the index   of the vector   

and by   we mean any integer number between   and 

 . 

Input: 

 A random sampling mask         

 A random sampled signal      

Output: 

 A recovered estimate      of the original 

signal 

Procedure IMAT(   ): 

1.       

2.  For              do 

3.            
4, Where     ( )  1, update     ( )      ( ) 

5. End for 
6. Return              

10. End procedure 

 

Firstly, we consider the spectral support is available as a 

side information. The iterative reconstruction algorithm for 

this case is as follows ‎[35]‎[7]: 

    ( )    ( )  
 

 
 ( )     ( )    

 ( )  (10)   

where  ( ) is the inverse Fourier transform of  ( ) 

defined as: 

 ( )  {
                    
                                    

 

 

This algorithm has been proposed and proved in ‎[35] 

for low-pass signals. We restate (Theorem 2 bellow) this 

algorithm for sparse multi-band signals at the sub-Nyquist 

Landau rate.   

Theorem 2: If the signal  ( ) is a stationary stochastic 

process, a sufficient condition for convergence of the 

iterative relation in ‎(10) to  ( ) is: 

     (11)      

where   is the average sampling rate and    is the total 

bandwidth of the signal (Landau rate).  

The proof of this theorem is given in the Appendix.  

If the spectral support of the signal is not known, we 

need algorithms such as IMAT for its recovery. This 

algorithm uses adaptive thresholding in each iteration. For 

a deterministic sparse signal  ( ) and random samples 

  ( ), the IMAT algorithm has the following iterative 

relation: 

    ( )    ( )      
    

 
      ( )

   
 ( )      

(12)       

The operator     is the threshold operator at the k-th 

iteration as given below: 

      ( )  { ( )       | ( )|         

                                           
. 

       is the threshold value which adaptively varies with 

iteration number.  

    The following theorem helps us to choose the threshold 

level properly, to guarantee perfect reconstruction of the 

algorithm. 

Theorem 3: Let  ( ) be a deterministic signal; if the 

threshold level is set as: 

 

        √    
   

∫ [     
 ( )]   

 

  

  
 (13)  

 

and    ( ) is chosen such that the           ( )  
          ( ) , then with an arbitrarily large probability, 

we would have:  
            ( )            ( )  

Proof: The proof is derived by induction. The basis of 

induction is true since we assume that           ( )  
          ( ) . From ‎(12), we have: 

            ( ) 

           ( ) 

        {
    

 
   ( )    

 ( ) } 

For simplicity, we denote  ( )    ( ) by   ( ). Based on 

the induction hypothesis, we have: 

          ( )            ( )  
As previously discussed, in section II, if we choose the 

threshold level for the signal   ( ) according to ‎(9): 

   (   )   √      √       (14)  

 

Then, we would have the following with arbitrarily large 

probability: 

       {
    

 
   

 ( ) }            ( )  

This implies that: 

            ( )           ( )   
According to ‎(3), we have: 

  
 ( )     ( )     ( ) 

We can write the following equality as: 



   
   

∫ [     
 ( )]   

 

  

  
    

   

∫   
 ( )   

 

  

  

    
   

  ∫   ( )   
 

  

  

    
   

  ∫   ( )   ( )  
 

  

  

    
   

∫    ( )   
 

  

  
 

The first term is zero since:  

∫   ( )   
 

  

      

According to Lemma 2,    ( ) is an ergodic process. 

Hence, we can conclude that: 

   
   

∫    ( )   
 

  

  
  {   ( ) }    

  
      

where the third equality follows from ‎(8).  

Likewise, we have: 

   
   

  ∫   ( )   ( )  
 

  

  
    {  ( )   ( )}

     ( ) {   ( )}    

where the last equality results from Lemma 2. Thus, we 

have: 

   
   

∫ [     
 ( )]   

 

  

  
            (15)  

 

As a result, the threshold value is computable as: 

        √    
   

∫ [     
 ( )]   

 

  

  
  

which is equal to the ‎(13) in the Theorem 3 and the proof is 

thus complete. 

  

Note that the threshold is computable from the sampled 

signal   . 

Theorem 4: The sufficient condition for the iterative 

relation in ‎(12) to recover any randomly sampled 

deterministic signal with arbitrarily large probability is: 

      (16)     

 

where   is the average sampling rate,    is the total 

bandwidth of the signal (Landau rate) and   (oversampling 

ratio
1
) is a constant, chosen with respect to the required 

accuracy.  

Proof: Define the filter      as follows: 

 

    ( )  {          |  ( )    
 ( )|        

                                                           
 

and     ( ) as its inverse Fourier transform.  

The proposed iterative relation in ‎(12) can be rewritten as: 

    ( )    ( )  
 

 
    ( )     ( )    

 ( ) 

   ( )  
 

 
    ( )      

 ( )   

                                                           
1
 The ratio of the sampling rate divided by the Landau rate 

is defined as the oversampling ratio. 

Thus,     ( ) would be derived as: 

 

    ( )    ( )  
 

 
    ( )     

 ( )  (17)  

 

We define     ( ) as the part of          whose 

spectrum is restricted to the subset     . Also, we suppose 

    ̅̅ ̅̅ ̅̅ ( ) as its complement. Therefore, we have:  

    ( )      ( )     ( )    ( )       ( )        

    ̅̅ ̅̅ ̅̅ ( )     ( )   ( )      ( )   
Hence,    ( ) can be written as: 

 

   ( )      ( )      ̅̅ ̅̅ ̅̅ ( )       (18)     

 

In order to analyze the convergence of the iterative relation, 

by assuming uniform distribution for random samples, we 

can have the following relation for the Fourier transform of 

  
 ( ) from Theorem 1 and (17):  

  
 ( )     ( )     ( )    

where    ( ) is a white Gaussian noise with the variance: 

 

     
  

      (19)    

 

Hence, we have: 

 
 

 
    ( )     

 ( )

      ( )  
 

 
    ( )     ( )

      ( )      ( )   (20)  

 

where  

    ( )  
 

 
    ( )     ( ) 

and 

 
Fig. 2.  Power spectrum of the random sampled signal. The hashed area 

indicats the spectrum region in which the sampled spectrum does 
not pass the threshold. The horizontal line above the f coordinate 

indicates the noise level.  

    ( )  
 

 
   ( )    ( ) 

(21)      

 

Thus, (20) can be rewritten as: 

    ( )       ̅̅ ̅̅ ̅̅ ( )      ( ) 

As the frequency support of     ̅̅ ̅̅ ̅̅  and      are mutually 

exclusive, we can have: 

       
    ̅̅ ̅̅ ̅̅ ̅        

According to ‎(19) and ‎(21) and ergodicity of    ( ), we 

have:  

 

 



      ∫ |
 

 
   ( )    ( )|

 

  
 

  

 
 

  
  

  
(∫     ( )  

 

  

)

 
 

 
   (∫     ( )  

 

  

) 
(22)  

 

In order to derive an upper bound for  
    ̅̅ ̅̅ ̅̅ ̅, we first define 

the filter     ( ) as follows: 

    ( )

 {                   ( )      |  ( )    
 ( )|        

                                                                                                     
 

 

and its inverse Fourier transform as     ( ). 

If we consider    
 ( ) as the random samples of    ( ), 

according to ‎(5), we have: 

  
 ( )     ( )     ( ) 

 

Considering the Fourier transform of ‎(18), we have: 

  
 ( )        ( )       ̅̅ ̅̅ ̅̅ ̅( )     ( ) 

 

Now, define   
   ( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  as follows: 

  
   ( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅      ( )       

 ( )  
 

Hence, we have: 

  
   ( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅̅ ̅( )     ( )    ( ) (23)      

 

  
   ( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  consists of the part of   

 ( ) with the spectrum that 

lies below (      ) . For obtaining better intuition, note 

that  
  
   ̅̅ ̅̅ ̅̅ ̅ is the hashed area in ‎Fig. 2.  

 

 
  
   ̅̅ ̅̅ ̅̅ ̅  ∫ |  

   ( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|
 
  

 

  

        
(  ) (24)  

 

The inequality comes from the fact that the area of the 

hashed regions of a multiband signal in ‎Fig. 2. is less than 

that of the specified rectangles if we consider    as the 

total occupied bandwidth of  ( ). 

According to Theorem 3 and ‎(23), with arbitrarily 

large probability, we have: 

 

∫ |  
   ( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

 
  

 

  

   ∫ |    ̅̅ ̅̅ ̅̅ ̅( )|
 
  

 

  

 ∫ |   ( )    ( )|
 
  

 

  

    
    ̅̅ ̅̅ ̅̅ ̅

   
  

(∫ |    ( )|  
 

  

)

    
    ̅̅ ̅̅ ̅̅ ̅

     (∫     ( )  
 

  

) 

(25)  

 

Considering ‎(24), ‎(25) and non-negativity of 

    (∫     ( )  
 

  
), we have: 

 

   
    ̅̅ ̅̅ ̅̅ ̅     (   ) (  )      (∫     ( )  

 

  

) 

Hence  

 

 
    ̅̅ ̅̅ ̅̅ ̅

 
   (   ) (  )      (∫     ( )  

 

  
)

  
    

(26)  

 

Using ‎(22) and ‎(26), we conclude that: 

     

   
 

 
    ̅̅ ̅̅ ̅̅ ̅       

   

 
(  )(  )  (∫     ( )  

 

  
)  (∫     ( )  

 

  
)

 

 
(    )(  )

 
 

The last equality is an immediate consequence of the 

definition of     ( ) and     ( ). Setting   (  

  )(  ), we see that     decays with a factor of 
(    )(  )

 
 

which indicates that we have at least a linear convergence 

of   ( ) to  ( ) in mean squared error sense. Hence, the 

theorem is proved by defining the oversampling ratio   

in ‎(16) as: 

      
  (    ) (27)     

  

IV. IMPLEMENTATION 

In this section, some practical details related to the 

reconstruction algorithms are discussed and some useful 

modifications are applied to the proposed method. 

A. The Details of the Reconstruction Algorithm 

To simulate this algorithm on a PC, we use a discrete but 

highly oversampled signal as an approximation of a real 

analog signal. We down-sample the input signal with a 

random sampling mask, and then try to recover the input 

signal from the samples. Since our algorithm manipulates 

the signal in time and frequency domain, we can use any 

orthogonal discrete transform (e.g. DFT, DCT, or DWT). 

Here, we demonstrate the pseudo-codes for our algorithms 

given in Theorem 2 and Theorem 4.  

 

Algorithm 2: Iterative Algorithm for Known Support 

  ,  ,  ,   are vectors with the length   which is a 

parameter. 

  ( ) for any signal   means the index   of the vector 

  and by   we mean any integer number between   

and  . 

Input: 

    Random Sampling Mask 

     Input Signal Sampled with Mask   

     Spectral Support of Input Signal 

     Sampling Rate 

Output:   

1.  ( )      
3.      FFT of    

4. For   from 0 to number of iterations do  

5.      
6. Where    , update  ( )    



7.         

8.       

9.   Inverse FFT of   

10, Where  ( )   , update  ( )      

11.     FFT of   

12.             
13. End for 

14.    Inverse FFT of   

 

Algorithm 3: A variation of IMAT from Algorithm 1 

  ,  ,  ,   are vectors with the length   which is a 

parameter. 

  ( ) for any signal   means the index   of the vector 

  and by   we mean any integer number between   

and  . 

Input: 

    Random Sampling Mask 

     Input Signal Sampled with Mask   

    Confidence Parameter 

     Sampling Rate 

Output:   

1.  ( )      

2.      FFT of    

3. For   from 0 to number of iterations do  

4.      

5.     
 

√  ⁄
‖  ‖

 
 

6. Where | ( )|     , update  ( )    

7.         

8.       

9.   Inverse FFT of   

10, Where  ( )   , update  ( )      

11.     FFT of   

12.             
13. End for 

14.    Inverse FFT of   

 

As discussed previously in Section II, we set the   

value as a constant parameter. Using a trial method, we 

observe that the value of       results in a good 

performance with a fast convergence rate. Consequently, 

according to ‎(27), a reliable reconstruction can take place 

with an oversampling ratio of 7, i.e., a sampling rate of 7 

times the Landau rate. We later apply this relation in 

Subsection IV.B for our parameter settings, and show that 

the necessary sampling rate may be  lower than this 

sufficient bound. 

B. Modifications and Efficiency Improvement 

There may be implementation modifications in 

practice. For example, it is possible to approximate 

thresholds with an exponentially damping function with 

respect to the iteration number to enhance computational 

complexity. As another example, one can overwrite known 

samples on corresponding values of  , to reach a more 

accurate result. Another helpful idea is to impose a 

relaxation parameter   when updating  , simply by 

replacing line 8 (for both algorithms) with        . 

The relaxation parameter is helpful for the faster 

convergence of the iterative algorithms.  

Note that the spectral support of the input signal is 

determined step by step during iterations of the modified 

IMAT algorithm (Algorithm 3). Hence, during each 

iteration, we can use the portion of the spectral support 

determined at previous iterations to enhance the 

performance of the new iterations. This simple idea can 

yield to a new hybrid algorithm by replacing line 6 of 

Algorithm 3 with the following: 

Where | ( )|       and   ( )    update  ( )    

 

This algorithm is referred to as the Hybrid IMAT in 

Section V, where we show this slight change highly 

improves the performance of the reconstruction algorithm.  

 
Fig. 3.  Perfect (100 dB) reconstruction of Algorithm 3: the required 

sampling rate versus the Landau rate. The expectation curve is the 

outcome of the analytical result. 

V. SIMULATION RESULTS 

In this section, we study the performance of the proposed 

methods from different aspects. In Subsection V.A, we 

evaluate our reconstruction algorithms using general 

synthetic signals in order to confirm the conditions of 

perfect reconstruction proved in Section III. The Hybrid 

IMAT proposed in Section IV is also included in our 

evaluations. In Subsection V.B,  we simulate a noisy 

multi-band RF signal to evaluate the performance of our 

hybrid method. We show that the performance of the 

hybrid method for real signals is even better than the 

analytical results. We also demonstrate that the proposed 

method has a denoising capability.  

A. Simulations of Synthetic Signals 

    As we proved in Section III, the sufficient condition for 

perfect reconstruction of our proposed method is an 

average sampling rate which depends on the Landau Rate. 

Hence, we use 3 different signals, with identical Landau 

rates of 30 MHz and the Nyquist rates up to 1 GHz. The 

applied signals differ in the number and the position of 

spectral bands. At a sampling rate of 210MHz (i.e., 7 times 

Landau rate), the IMAT algorithm can reconstruct each of 

the signals reliably. We consider a 100dB SNR value as a 

reliable reconstruction. 

For consistency of the simulation results, we normalize 

the sampling and Landau rates by dividing the rates by the 

Nyquist rate, which is a representation of the sparsity of 

the signal.  

 



To show experimental sampling rates derived from 

the simulation results with respect to the Landau rate, we 

simulated algorithm 3 for synthetic signals at different 

Landau rates (‎Fig. 3. ). Our analytical expectation of the 

required sampling rate (i.e.      , from Section IV.A) 

is also depicted in  ‎Fig. 3. This figure confirms the 

accuracy analytically expectated values at low Landau 

rates. Furthermore, At higher Landau rates, the simulated 

sampling rates get saturated, and deviates from the 

analytical results. The reason is that at higher normalized 

Landau rates the signal becomes dense and the analytical 

upper bound becomes poor.  

‎Fig. 4.  demonstrates the simulation results for 

Algorithm 2 with a notation similar to ‎Fig. 3. The 

expectation for this method behaves linearly (   ). In 

contrast to the IMAT algorithm, the performance of 

Algorithm 2 is worse than the expectation curve. From this 

figure we can surmise that when the oversampling ratio is 

equal to 3 (      Approximation in  ‎Fig. 4. ) we get 

good results. 

 
Fig. 4.  Perfect (100 dB) reconstruction of Algorithm 2: the 

required sampling rate versus the Landau rate. 

 
Fig. 5.  Hybrid IMAT: required sampling rate for perfect 

reconstruction (logarithmic view) 

 

Fig. 6.  Simulation results of IMAT on a noisy FM modulated 
signal 

‎Fig. 5. demonstrates similar evaluation for the Hybrid 

IMAT. The approximated linear bound for this simulation 

results can be formulated as      , which is as low as 

Algorithm 2.  

B. Simulation Results for Multi-Band RF Signal 

In this subsection we investigate our method with a real 

scenario. We use a multi-band RF signal generated by 

MATLAB. We measure the normalized Landau rate of the 

generated signal to be approximately 0.04. We add a white 

Gaussian noise to the signal to simulate a received signal 

with an SNR value of 14 dB. We randomly sample the 

received signal with various rates and apply the Hybrid 

IMAT to reconstruct the sampled signal. ‎Fig. 6. shows the 

SNR value of the recovered signal for different sampling 

rates. At         (i.e., the sampling rate of 0.05), the 

Hybrid IMAT algorithm recovers the signal with the SNR 

equaling that of the received signal. At higher sampling 

rates, the Hybrid IMAT algorithm shows a denoising effect 

on the signal, where it recovers up to 18 dB with a 

sampling rate of 0.1.  

VI. CONCLUSION 

We have proposed a sub-Nyquist random sampling 

recovery method for sparse discrete and continuous multi-

band signals. Unlike the uniform sampling case, this 

algorithm does not need an anti-aliasing filter. We provided 

mathematical proofs for the reliable reconstruction of the 

iterative recovery algorithms. Furthermore, the simulation 

results validated the analytical proofs. We showed that our 

proposed method reliably recovers any signal sampled at 

least at 3 times the Landau rate. Additionally, this method 

does not require to know the position of the signal occupied 

bands in the frequency domain. We also used real RF 

signals and observed that our system can perform better 

than the analytical results in practice. We showed that our 

reconstruction is not only robust against noise, but also has 

a denoising effect on the input signal.  

 

APPENDIX 

Proof of Lemma2: 

 

 

 

 



The necessary and sufficient condition for ergodicity of 

a Gaussian process is the integrablity of absolute value of 

its autocorrelation function. Since   ( ) is a Gaussian 

process, it will be ergodic if and only if: 

∫|  ( )|  

 

  

   

By substituting   ( ) from ‎(7), it can be rewritten: 

∫|  ( )|  
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And it follows that the sufficient condition for 

ergodicity of  ( ) is: 

∫| ( )|  

 

  

   

  

Proof of Theorem 2: 

We first prove by induction that for each k 

                ( )            ( )  (28)     

 

Assume this is true for k. We conclude this also applies for 

k+1. From ‎(10), we have: 

            ( ) 

           ( ) 

        {
 

 
 ( )     ( )    

 ( ) }  

Thus, 

            ( ) 

           ( ) 
 [          

           ( )    
 ( ) ]  

By considering the definition of filter  , it is trivial that: 

            ( )            ( )   
To complete the induction, we need to choose   ( ) such 

that 

          ( )            ( )  
which is possible for all conditions. 

According to ‎(28),   ( ) can be written as follows: 

  ( )   ( )    ( ) 

where           ( )            ( ) . Hence: 

     ( )    ( )    ( ) (29)       

 

With respect to these facts, the iterative method can be 

written as: 

    ( )    ( )  
 

 
 ( )     ( )    

 ( ) 

   ( )  
 

 
 ( )

 {  ( )  (  ( )    
 ( ))}

   ( )  
 

 
 ( )      

 ( )  

Therefore, the iterative method can be written as follows: 

        ( )   ( )    ( )  
 

 
 ( )     

 ( )   (30)  

 

where   
 ( ) contains the random samples of   ( ).  

With respect to ‎(2), the power spectrum of    
  can be 

computed as:  

   
 ( )       ( )       

According to ‎(29) and considering the definition of filter 

 , the power spectrum of 
 

 
 ( )     

 ( )  will become as 

follows: 

  
 
 ( ) {  

 ( )}
( )  | ( )| {

 

  
   

 ( )}

    ( )      ( ){   }  
Therefore, we have: 

  
 

 
 ( )     

 ( )    ( )      ( ) 

where the power spectrum of     ( ) is equal to 

     ( )      ( ){   }. By replacing 
 

 
 ( )     

 ( )  

in ‎(30), we have: 

    ( )   ( )      ( ) 

We then calculate the power spectrum of     ( ) to 

rewrite the power of sampling noise at iteration k+1 as 

follows: 

     ( )      ( ){   }             ∫      ( )  
 

  

 ∫     ( ){   }  
 

  

 
  

 
    

Considering ‎(11), 
  

 
  , the power of sampling noise 

converges to zero exponentially and   ( ) converges to 

 ( ) and the theorem is thus proved.  
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