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Microwave Medical Imaging Based on Sparsity and
an Iterative Method With Adaptive Thresholding

Masoumeh Azghani*, Panagiotis Kosmas, and Farokh Marvasti

Abstract—We propose a new image recovery method to improve
the resolution in microwave imaging applications. Scattered field
data obtained from a simplified breast model with closely located
targets is used to formulate an electromagnetic inverse scattering
problem, which is then solved using the Distorted Born Iterative
Method (DBIM). At each iteration of the DBIM method, an un-
derdetermined set of linear equations is solved using our proposed
sparse recovery algorithm, IMATCS. Our results demonstrate the
ability of the proposed method to recover small targets in cases
where traditional DBIM approaches fail. Furthermore, in order
to regularize the sparse recovery algorithm, we propose a novel
La-based approach and prove its convergence. The simulation re-
sults indicate that the L»-regularized method improves the robust-
ness of the algorithm against the ill-posed conditions of the EM
inverse scattering problem. Finally, we demonstrate that the regu-
larized IMATCS-DBIM approach leads to fast, accurate and stable
reconstructions of highly dense breast compositions.

Index Terms—Adaptive thresholding, breast imaging, com-
pressed sensing, inverse scattering, microwave tomography.

I. INTRODUCTION

ICROWAVE tomographic methods for clinical appli-

cations estimate the spatial distribution of dielectric
properties in a tissue region by solving an electromagnetic
(EM) inverse scattering problem [1]. Various EM inverse
scattering methods have been proposed in recent years for this
purpose, such as conjugate gradient techniques [2], [3] and
Gauss-Newton (GN) optimization algorithms [4]-[6]. In this
paper, microwave tomography is implemented by applying
the Distorted Born Iterative Method (DBIM) which, as any
GN approach, approximates the nonlinear inverse scattering
problem with an underdetermined set of linear equations.

We propose a novel solution to the resulting linear system at
every DBIM iteration based on an Iterative Method with Adap-
tive Thresholding for Compressed Sensing (IMATCS) [7]. In
the IMATCS method, a crude reconstruction is applied succes-
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sively to the linear measurements of the signal and the recovered
signal at each iteration is sparsed using an adaptive thresholding
function. We should note here the existence of other thresh-
olding techniques such as iterative hard thresholding (IHT) and
K -sparse algorithms [8], [9]. The performance of these IHT
algorithms, however, depends highly on the value of the IHT
threshold, which should be determined by trial and error. On
the contrary, an important advantage of the proposed IMATCS
method over algorithms such as the iterative K -sparse method
is that it does not require the knowledge of the sparsity number
K of'the signal as a priori information for signal recovery. This
important advantage is based on the IMATCS' adaptive thresh-
olding approach, which enables the algorithm to pick up the sig-
nificant signal entries at each iteration.

The proposed approach belongs to a wider category of spar-
sity regularization techniques, which are currently pursued in
MicroWave Imaging (MWI). In [10], for example, an L; reg-
ularizer is exploited to enforce sparsity in contrast-enhanced
MWTI of breast tumors. The elastic net method is proposed in
[11] to solve the linear problem within the DBIM, resulting
in an improvement in the reconstruction of the breast interior.
These methods are inspired by Compressed Sensing (CS) theory
[12], [13], which can recover a sparse signal from a lower di-
mensional measurement vector, i.e., the number of measure-
ments is much less than the number of signal entries. Hence, CS
methods are suitable for the solution of underdetermined sys-
tems of equations using concepts of sparsity of the underlying
signal.

We note that, while CS methods and the IMATCS are ap-
plicable in various domains such as sparse data acquisition or
signal compression [ 14], their application in this work refers to
the solution of an underdetermined system of linear equations
based on the measurement matrix at each iteration of the DBIM
algorithm. Contrary to CS applications which attempt to design
the measurement matrix to satisfy appropriate conditions, the
measurement matrix in this work is formed by a conventional
microwave tomography setup adopted in our simulations.

The nonlinearity and ill-posedness of the EM inverse scat-
tering problem can lead to unstable reconstructions in MWI
medical applications, which involve the presence of dense or
closely located scatterers in the reconstructed region. To im-
prove robustness, regularization techniques must be applied at
the expense of compromised resolution in the resulting images
[15]. We hereby propose a novel Ls-regularized version of
IHT which can lead to stable signal recovery, and present its
convergence proof. In particular, we solve the Ly-regularized
Ly-minimization problem using the Majorization-Minimiza-
tion (MM) method as used in [9] for the derivation of the [HT
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algorithm. Similar to IHT, the performance of the Lo-IHT
relies on the proper selection of the threshold value based on
a priori knowledge of the underlying signal. To overcome
this limitation, we propose an La-IMATCS method, which is
a combination of the IMATCS and L,-IHT algorithms that
leads to stable signal recovery in scenarios where the original
IMATCS becomes unstable.

In order to demonstrate that the proposed method can im-
prove resolution in DBIM-based MWI, we examine simplified
homogeneous breast models with closely located tumor-like
scaterrers of different size. This choice is motivated by on-
going research on microwave breast imaging and breast cancer
detection, which is arguably the most advanced MWI medical
application [16]. The IMATCS algorithm allows the DBIM
method to reconstruct these closely located targets, which
cannot be resolved with traditional L» regularization schemes.
We also test the ability of the regularized version of our al-
gorithm to image complex breast structures by considering a
highly heterogenous breast distribution, which is reconstructed
using multiple-frequency data.

The rest of the paper is organized as follows. A review of
EM inverse scattering using the DBIM and CS theory together
with the IMATCS approach is given in Section II. The develop-
ment of novel Lo-IHT and L2-IMATCS methods is presented
in Section III. Simulation results for various scenarios are given
in Section IV, and Section V concludes this work. Finally, we
provide a mathematical proof for the convergence of the algo-
rithm in the Appendix. A preliminary version of this work has
been reported in [17].

II. COMPRESSED SENSING IN MICROWAVE IMAGING

A. EM Inverse Scattering With the DBIM

The DBIM algorithm is based on the distorted-wave Born
integral equation [18]

E*(r) = B'(r) - E'(r) = w’p /

v

dr'Gb(r, ') Ae(rYE! (r")

(1)
where E*€ is the scattered electric field, Ae(r’) = e(r') — e (r')
is the unknown contrast function over the volume of support V',
and G?(r, ') denotes the dyadic background Green's function,
which represents propagation from the source located at r to the
point ¥’ inside V. The unknown total field E? is approximated
with the known background field E? inside the integral in (1).
The resulting linear integral equation is solved in the discrete
domain at each iteration of the DBIM algorithm for the contrast
function Ae(r’).

This approach leads to a GN algorithm for nonlinear least-
squares problems [19]. At iteration k&, the algorithm solves a
linear least-squares problem described by

Ti Jep™ = J{x 2)
where py is the desired GN direction vector corresponding to
the unknown Ae(r'), ry, is the residual vector and Jj, is the Ja-
cobian matrix of the least-squares problem. The forward model
is run at each iteration to compute E® and G®, which are then
used to calculate rj and the Jacobian .J;. The resulting system
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(2) is solved for py, the vectorized update Ae(r), and the new
value is added to the previous estimate of e(r) [25].

The choice of approach for solving the linear system in (2)
must consider two important factors. First, the matrix J, is typ-
ically ill-conditioned and requires a regularization method to
ensure stability. Second, the solution of this linear system for
large-scale problems is computationally very demanding; there-
fore, a cost-efficient strategy is necessary. Previous 3-D MWI
algorithms have employed a Conjugate Gradient Least Squares
(CGLS) method with add-hoc stopping criteria to regularize and
solve (2) efficiently [5], [20]. This work uses CS theory to solve
the linear system of equations resulting from the DBIM approx-
imation in (1) as described below.

B. Application of CS Theory

We can express the linear problem resulting from (1) at each
iteration of the DBIM as
y = ®s €)
where ® is an M x N measurement matrix (M < N) formed
by G® and E?®, s represents the N-dimensional vector of un-
known dielectric contrast function update Ae, and y represents
the residual measurement data vector E*¢ [5]. Our aim is to
recover s from y, given that the number of measurements M
is much less than the number of unknowns V. In general, CS
theory solves this underdetermined problem by assuming that
s is sparse [12], [13]. If s is not sparse, a transformation using
appropriate basis functions which induce sparsity can be used

s =Ux “4)
leading to a reformulation of (3) as
y = ®¥x = Ax (5)

where A = ®W¥. To solve (5) under the constraint that x is
sparse, we search for the most sparse solution among all the
vectors satisfying the constraint y = Ax. We note here that
sparsity is defined as the number of nonzero entries of x, i.e.,
the Ly norm of x. Hence, the main CS problem becomes

min ||x||p subject to y = Ax. (6)
Equation (6) can be solved by an exhaustive search method
which is V P-hard. A tractable approach to solve the nonconvex
problem (6) is to approximate it with the convex problem

m}jn Ix|l1 subject to y = Ax. @)

The above problem is linked to the Basis Pursuit (BP) algo-
rithm [21], or equivalently the Least Absolute Shrinkage and
Selection Operator (LASSO) [22] algorithm that can be solved
using convex optimization techniques. Different types of CS
recovery methods include the family of greedy algorithms
such as Matching Pursuit (MP), Orthogonal Matching Pursuit
(OMP), and gradient pursuit [23], [24]. These algorithms are
computationally more efficient than the L;-norm minimization
techniques at the expense of lower guaranteed recovery perfor-
mance. Thresholding techniques such as IHT [8], [9] and our
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proposed IMATCS [7] come in between these two groups in
both recovery performance and simplicity.

Most CS recovery techniques require that special conditions
are satisfied by the measurement matrix ¢ in order to recover
the signal successfully; this leads to the design of measure-
ment matrices such as random Gaussian, Bernoulli, and Toeplitz
matrices. In EM inverse scattering, however, the measurement
matrix is imposed by the EM integral equation where straight-
forward manipulation of this matrix is not possible. Moreover,
these EM equations are inherently nonlinear and are only ap-
proximated to a linear form shown in (1). These two factors will
inevitably affect the performance of CS recovery methods in re-
alistic EM inverse scattering applications.

In addition, the unknown vector of dielectric contrast update
s will not be sparse at every DBIM iteration in many realistic
EM inverse scattering problems, such as the imaging of hetero-
geneous dense breasts without a priori information. Finding a
transformation matrix ¥ that can induce sparsity in (4) is a chal-
lenging task in these cases. This work does not address this topic
but manages to reconstruct nonsparse s vectors by introducing
the Lo-IMATCS approach presented in Section III. Therefore,
we consider in (4) that ¥ is the identity matrix I, so that A = &
is the measurement matrix defined in the standard DBIM ap-
proach.

C. The IMATCS Algorithm

As mentioned in the introduction, the IMATCS method be-
longs to the family of thresholding techniques. The ITHT [8]
solves the following optimization problem:

min [y — Ax|; + Allxo. ®)
The solution of (8) can be written as
Xpr1 = H (x + A" (y — Axy)) 9)

where A* denotes the conjugate transpose of matrix A, A is the
relaxation parameter which controls the convergence of the al-
gorithm, and H is a hard thresholding function which discards
all the coefficients with amplitudes smaller than a predefined
fixed threshold. The threshold value should be finely tuned using
a priori information of the underlying signal. However, it is
usually impossible to have a priori knowledge of the signal be-
fore its recovery. In order to get around this problem, IMATCS
takes advantage of an adaptive thresholding procedure with a
threshold initial predefined value that decreases exponentially at
each iteration. This adaptive property of the thresholding func-
tion relaxes the theoretical requirement of knowing the exact
value of the hard threshold.

As a result, the mathematical formulation of the IMATCS
method is the same as (9) with the difference that the thresh-
olding function H decreases with each iteration in an exponen-
tial manner given as

T, = Toe ™ (10)
where 1 is the iteration number, T} is the initial threshold value,
and « indicates the threshold step. The algorithm given in (9)
starts from a zero initial value, xo = 0. The coefficient vector
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Fig. 1. Block diagram of the IMATCS method.
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is recovered as X;iermaz, after an “itermaax” number of iter-
ations. The adaptivity of the threshold enables us to recover
the embedding signal from its linear measurements without any
knowledge of the underlying signal. The block diagram of the
IMATCS method is depicted in Fig. 1, where G = A*A. The
G operator in Fig. 1 captures the sampling (using A) and crude
reconstruction (using A*) processes, which are applied itera-
tively according to (9). At the end of each iteration, the signal
is sparsed using the thresholding function H.

While the IMATCS algorithm can be applied successfully to
recover the image from its compressive measurements, it must
be emphasized that the set of equations in (2) is not exactly
linear but approximated to be linear in MWI applications. This
linear approximation can result in instability which can cause
the IMATCS (or any other CS-based recovery algorithm) to
diverge after some iterations. In order to come around this
problem, an L,-regularized IMATCS algorithm is proposed
in the next section which incorporates the L.-regularization
strategy into the sparsity-based recovery algorithm in order to
stabilize the recovery procedure.

III. IMPLEMENTATION OF REGULARIZED ADAPTIVE
THRESHOLDING CS METHODS

A. Formulation

In order to deal with the ill-posedness of the EM inverse scat-
tering problem, we can reformulate (8) to solve the following
minimization problem:

min [ly — Ax|J3 + Mafx/lo + Az x]3. (11)
The above cost function is an Ly-regularized Ly-minimization
approach, Ly / Lo. Previous CS algorithms applied to MWI such
as the elastic net [11] have minimized a cost function based
on an Lj-regularized Lq-minimization, which is solved by re-
shaping the problem to a LASSO cost function in a larger di-
mensional subspace. The complexity of LASSO increases with
the dimension of the underlying signal; hence, the elastic net has
a great complexity and computational burden. Here, we propose
an L-THT method which is much simpler and more robust as a
linear solver at each DBIM iteration in (2).

We propose to solve the Lg /L4 regularized problem in (11)
using the following iterative method, called L,-IHT, given by

H (x5 + A" (y — Axy)) . (12)

1
Xk+1 = m
The mathematical derivation of this novel approach is given in
the Appendix. The performance of the L,-IHT algorithm is ex-
tremely sensitive to a proper selection of the threshold value,

and therefore the method cannot guarantee convergence to an
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acceptable solution. In order to deal with this problem, we have
implemented an L2-IMATCS method which combines the iter-
ative thresholding approach of IMATCS with the L,-IHT algo-
rithm. The formulation of the Ls-IMATCS is the same as (12)
with the difference that the H function is adaptively decreased
according to (10).

B. Parameters Selection

The performance of the proposed L;-IMATCS method is
determined by the choice of the regularization parameters Ay
and A2, and the thresholding function parameters Tj, «, and
“stermax.” The parameter A; controls the convergence of the
algorithm and should satisfy the following condition:

2
0< )\ <

~ max eig{A*A) (13)

where eig denotes the matrix eigenvalues, and A is the measure-
ment matrix in (5), which is updated at each DBIM iteration. In
the simulations of the next section, we have set A; as

1.9
M7 fnax cig(A*A)’ (1

The introduction of A> controls the stability of the algorithm
by promoting L»-based solutions of the minimization problem
in (11). However, selecting a large value for this parameter will
reduce the impact of the other terms in (11) and can therefore
increase estimation errors in the recovered image. Reconstruc-
tions with different values of A» have confirmed this trade-off
between the algorithm's stability and imaging accuracy.

The thresholding parameters T, «, and “itermaax” are re-
sponsible for the quality and the resolution of the reconstructed
image. In order to determine the thresholding parameters, we
have followed the following “ad-hoc” process. First, we set a
sufficiently large value for T}, say 50, a small value for o, say
0.01, and a large integer number for “itermaa,” say 300. These
initial values generate a slowly decreasing thresholding func-
tion which can capture almost all the significant components of
the signal, producing a reliable estimation of the true signal. The
method is simulated using these initial parameters. The recov-
ered signal at the end of each DBIM iteration is investigated
to detect the maximum signal entry. Having detected the max-
imum value of the underlying signal to be around 0.04 for all
DBIM iterations, Tj is set to a slightly larger value equal to
0.07. Then the optimal « is obtained by decreasing its value
without altering the result obtained by the initial parameters.
The resultant value for « is 0.2. Finally, “termax” is selected
by observing the residual error curve with respect to the itera-
tion number. In particular, the optimal value of “itermax” is
where the residual error has reached its minimum value (200)
for the first time and does not change after that. It is important
to note that this process is only run for one case and the resulting
parameters are used in all other cases.

IV. RESULTS

This section presents simulation results inspired by mi-
crowave breast imaging, which illustrates the advantages of
the proposed method. We first consider two closely located
tumor-like scatterers in simplified breast models, where the
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Fig. 2. Maps of (a), (c) the dielectric constant ¢, and (b), (d) the conductivity
o calculated at 1 GHz for the two simulation scenarios, which differ only in the
size and shape of the targets. Locations of data points for a sixteen-, eight-, and
four-antenna configuration are also shown in (a) with crosses, diamonds, and
squares, respectively.

dielectric distribution is sparse in the reconstruction domain.
Then, we demonstrate the robustness of our regularized
IMATCS-DBIM algorithm in reconstructing complex breast
structures. The presented breast models, simulations, and
reconstructions are two-dimensional (2-D), but they can be
extended in three dimensions (3-D) similar to previous work
based on the same setup and methods [5]. We consider ideal
dipole antennas as transceivers in our simulations, which
correspond to point sources for our 2-D geometry and are
arranged cylindrically to encircle the breast slice at a distance
of 1-2 cm away from the skin. These point sources illuminate
the breast with a wideband pulse (with a —20 dB bandwidth
from 500 MHz to 3.5 GHz) sequentially, and also record the
data to be used for the solution of the microwave tomographic
problem. The effect of the number of these data points on
the reconstructions in the presence of Gaussian noise is also
considered below.

A. Simulation Testbeds

We simulate measured data using the Finite-Differ-
ence-Time-Domain (FDTD) method and a uniform grid cell
size of 2.0 mm, which is also used as the forward solver in the
inversion process. This “inverse crime” assumption allows us
to benchmark the performance of our approach. The algorithm
estimates the parameters €., €5, and o, of the Debye model for
the complex relative permittivity

€s — €x . O

er(w) = oo + 14 jwr )

(15)
weg
where 7 is assumed constant for all tissues (with a value of 17.1
ps). The background medium is assumed lossless with ¢, = 2.6
in all our simulation testbeds, and the Debye parameters for
the various tissues are extracted from the University of Wis-
consin—Madison's repository data [26].

First, we have considered the testbeds depicted in Fig. 2. The
testbeds resemble a two-dimensional coronal slice of a breast
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x(em)

Fig. 3. Maps of the dielectric constant €, (left) and the conductivity & (right)
calculated at 1 GHz for the full-breast simulation testbed. Spatial resolution is
2 mm.

comprised of homogenous breast tissue characterized by volu-
metric average Debye parameters (e, = 11.1ande = 0.11S/m
at 1 GHz), a skin layer, and two identical closely located tumor-
like targets. The dielectric constant and conductivity distribu-
tions calculated at 1 GHz are shown in Fig. 2 for the two sce-
narios. The two cases differ only in the size and shape of the
two closely located tumors in order to test the resolution capa-
bilities of our proposed algorithm for 16, 8, and 4 transceivers
with locations shown in Fig. 2(a).

The testbeds in Fig. 2 are useful in studying the resolution
abilities of our sparsity promoting algorithm in idealized sce-
narios, but they do not correspond to a realistic microwave
breast imaging application, where the breast interior can be
highly heterogeneous leading to a severely ill-posed inverse
problem. To assess the feasibility of using the L,-IMATCS
algorithm for these more complicated scenarios, we have
applied the previous setup to a 2-D coronal slice from a
“heterogencous breast” phantom taken from University of
Wisconsin—Madison's online breast phantom repository [26].
The dielectric constant and conductivity distributions of the
considered coronal slice are shown in Fig. 3.

B. Reconstructions of Two Closely Located Targets in a
Homogeneous Numerical Breast Phantom

Fig. 4 presents reconstructions of the dielectric constant and
conductivity distributions for the two simulation scenarios of
Fig. 2. These images were obtained by the L2-IMATCS algo-
rithm using data from six equally spaced frequencies in the
range 1.2-2.7 GHz. We used A> = 0.005 in (11) for these recon-
structions, as higher values resulted in lower resolution. Only
the two tumor-like targets were unknown in the breast model
used as the “initial guess” for the DBIM algorithm. The results
in Fig. 4 demonstrate that the L,-IMATCS approach manages
to resolve the two targets and is sensitive to their size and shape.
The conductivity images are less accurate than those of the di-
electric constant, which agrees with previous results related to
microwave tomography [4].

Importantly, traditional Ly-based methods based on CGLS
or LSQR linear solvers could not resolve the two targets in the
above cases. Furthermore, our simulation attempts with some
other popular CS-based methods were not successful in imaging
these scenarios; for example, the LASSO and OMP methods
diverged after the first iteration, while the imaging performance
of the IHT algorithm depended strongly on the sparsity number
of the dielectric contrast vector, which is not known a priori.
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Fig. 4. (a), (c) Reconstructed dielectric constant e, and (b), (d) conductivity &
distributions calculated at 1 GHz for the Lz-IMATCS algorithm and the cases
depicted in Fig. 2 with all 16 antennas depicted in Fig. 2(a).
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Fig. 5. Same as in Fig. 4 for the elastic net algorithm [11].
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Fig. 6. Norm of the residual data vector b in (2) versus DBIM iteration number
for the reconstructions of Figs. 4 and 5.

We have also tested the elastic net approach of [11] for the
cases in Fig. 2, and the resulting reconstructions are comparable
to our proposed method as shown in Fig. 5. The similar conver-
gence performance of the two algorithms is confirmed by Fig. 6,
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Fig. 7. (a), (c) Reconstructed dielectric constant €,. and (b), (d) conductivity
o distributions calculated at 1 GHz for the L;-IMATCS algorithm and the top
case in Fig. 2, for eight (top) and four (bottom) antennas.

where the norm of the residual vector ry, in (2) versus the itera-
tion & of the DBIM algorithm are plotted. Although the recon-
structions of the two algorithms in Figs. 4 and 5 are of compa-
rable quality, the computational cost of the elastic net implemen-
tation is considerably higher than that of the L,-IMATCS algo-
rithm. Tested on a standard PC Matlab environment, the elastic
net solver took almost 10 min while the Ly-IMATCS algorithm
took about 30 s for each DBIM iteration. This order-of-magni-
tude difference in computation times becomes a crucial factor
in 3-D problems. In addition, the L2-IMATCS algorithm proved
to be more robust when the ill-posedness of the inverse problem
was increased, as in the second set of simulations described in
Section IV-C where the elastic net approach failed to lead to
meaningful reconstructions.

We have also studied the robustness of our algorithm with
respect to the number of antennas available for data acquisi-
tion and the Signal-To-Noise ratio (SNR) relative to the total
recorded signal. To this end, we have first repeated the recon-
struction process (keeping the same value for Ay) for the top
case of Fig. 4 using eight and four antennas shown in Fig. 2(a).
The resulting permittivity and conductivity images are shown in
Fig. 7. It is evident that good images can be obtained with eight
antennas, but data from four antennas is not sufficient to resolve
the two targets well, particularly in the estimation of their con-
ductivity. For limited data setups, the use of more frequencies
within a wider bandwidth could be used to obtain more data and
improve reconstructions.

Similarly, good results are obtained when Gaussian noise is
added to the simulated data even for a very low SNR of 30
dB relative to the total received signal (which includes direct
antenna contributions and skin reflections). The resulting re-
constructions are shown in Fig. 8 and confirm that the regular-
ized Lo-IMATCS algorithm is robust in the presence of addi-
tive noise, allowing a flexible formulation of the L0/L2 mini-
mization problem by adjusting the regularization parameter A,
(which for example was increased from 0.005 to 0.01 to handle
the SNR = 30 dB case).
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Fig. 8. (a), (c) Reconstructed dielectric constant €,. and (b), (d) conductivity &
distributions calculated at 1 GHz for the L -IMATCS algorithm and the top case
in Fig. 2, for SNR = 60 dB (top) and SNR = 30 dB (bottom), and sixteen
antennas. The SNR is relative to the total received signal, which includes direct
antenna contributions and skin reflections.

C. Reconstructions of a Heterogeneous Numerical Breast
Phantom

Similar to the previous results, full breast reconstructions
were obtained by using the Ly-IMATCS algorithm with data
from six equally spaced frequencies in the range 1.2-2.7 GHz.
This more complex imaging scenario, however, required an
initial low-frequency reconstruction at 1 GHz prior to using
multiple-frequency data, and a higher value of the regulariza-
tion parameter Ao = 0.2 was used. As in [5], the algorithm
used a priori knowledge of the breast surface and its volumetric
average Debye parameters as “initial guess” for the homoge-
neous breast interior, but did not include any a priori info on
the skin layer thickness or properties. As in Section IV-B, we
have tested the algorithm for sixteen or eight antennas and 60
or 30 dB SNR. Comparing the images in Fig. 9 to the true
distributions in Fig. 5 suggests that good reconstructions can
be obtained for eight antennas and low SNRs. As before, the
conductivity images are slightly less accurate than those of the
dielectric constant; nonetheless, these results suggest that the
proposed algorithm can reconstruct complex dielectric profiles
by suppressing its sparsity-promoting minimization term and
using monochromatic low-frequency data in the first iterations
of the DBIM algorithm.

This latter strategy is also important to ensure that the
L5-IMATCS algorithm is robust to the choice of initial
guess, which can be critical to the imaging performance of
GN optimization methods. For example, using low adipose
tissue Debye parameters for the initial homogenous breast
interior instead of its true volumetric average parameters
required a lower frequency of 700 MHz (instead of 1 GHz)
as initial step in the first iterations of the DBIM algorithm.
While the true volumetric average Debye parameters will not
be known a priori, various methods can be used to estimate
these average values or provide a coarse heterogeneous initial
guess [3].
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Fig. 9. (a), (c) Reconstructed dielectric constant ¢, and (b), (d) conductivity
o distributions calculated at 1 GHz for the L2-IMATCS algorithm and the full
breast model of Fig. 3 for eight antennas, and SNR = 60 dB (top) and 30
dB (bottom). SNR is relative to the total received signal, which includes direct
antenna contributions and skin reflections.

V. CONCLUSION

We have proposed a novel MWI approach based on the
DBIM algorithm and an iterative technique based on sparsity
and the IMAT algorithm. Our simulation results have demon-
strated the advantages and potential of this method to enhance
resolution in microwave medical imaging. In particular, the
proposed L,-IMATCS algorithm can be adjusted to promote
sparsity as the number of DBIM iterations increases in order to
reconstruct fine details in the image. We have also presented a
theoretical study of the convergence properties of this algorithm
in the Appendix.

Our future work will focus on studying this approach for 3-D
microwave medical imaging. This will involve computationally
efficient implementations of the product A* A in blocks [5], and
possibly the use of basis functions [3], [27] in (4) that can reduce
computational complexity. These techniques can ensure that in-
version is not prohibitively time consuming, while recently pro-
posed analytic approaches [28] could replace the 3-D FDTD for-
ward solvers thereby reducing dramatically the overall compu-
tational cost of the 3-D algorithm.

Beyond the 3-D extension, future work will focus on de-
veloping adaptive and robust strategies for the optimal choice
of parameters in the L,-IMATCS algorithm described in
Section III-B, taking into account our multiple-frequency
reconstruction strategy. For example, using our pre-selected
values for the IMATCS parameters to reconstruct the two
targets in Fig. 2(a) with low (10%) dielectric contrast relative
to the homogeneous background resulted in less accurate
reconstructions. This is due to the fact that the choice of the
IMATCS parameters depends on the scattered signal and thus
on the unknown contrast. Therefore, an automated and sound
process for the selection of these parameters relative to the
choice of Ay would increase the algorithm's robustness.

This preliminary study suggests that this novel algorithm can
offer an advantageous sparsity-based approach to enhance res-
olution in microwave medical imaging. Our ultimate goal is to

apply this algorithm to experimental systems and test whether
it can lead to superior reconstructions relative to conventional
Lo-based strategies.

APPENDIX
THE Lo-IHT ALGORITHM DERIVATION

The cost function to be minimized in the L,-IHT algorithm
is as follows:

fl@) = lly — Azl + Mllx]lo + Azllxl3. (16)

We solve this optimization problem using the Majorization
Minimization scheme [8] which minimizes the surrogate of the
cost function instead of its direct optimization. The surrogate
function can be defined as (17) with the aid of an auxiliary vari-
able z

C(x,2) = [ly — Ax|3 + M[[x]lo + X2|[x|3 — | Az — Az[3
+lx —=[3. (17)

Neglecting the terms independent of x and decomposing the
surrogate function in terms of its vector entries, we have

C(x,z) = fo —2x;2; — 2%; A7y + 2x;A7Az (18)

+ A1 %o 4+ Aox2. (19)

If 2; = 0, the component C'(z;, z;) would be zero. For z; # 0,
the component C'(x;, 2;) can be minimized by taking its deriva-
tive with respect to the entries, 2;;. Thus, we have

X; = 00— C(xi,zi) =0
X; # 0 = O(xi,2;) = M — —5— (z; + Al (y — Az))*

1+X2 (20)
The crossing of the two curves occur in
A1
X =4/ —. 21

Therefore, the iterative relation of Lo-IHT can be obtained as
follows:

1
n+1 n * _ n
=1 +>\2H\/)\l/(1+)\2) (x" + A*(y — Ax™)) (22)
where I is the hard thresholding operator defined as
N JO ifjz| <4
Ho() = {m ifjz| >80~ (23)

Lemma 1 (Nonincreasing): Assume ||A|l; < 1 and let
e - (l/(l + AQ))Hm (X"‘ + A*(y — Axn))’
then the sequences f(x") and C'(x"*1,x") are nonincreasing.

Proof 1:

FEMTY) <) 4 T - 13— AT - XM
:C(X7l+1,x7l) S C(X”,X”) — f(Xn)
<) H [ =X - AT - X"
:C«(X717Xn71)

where the first inequality results from the condition |Aljz < 1
and the first equality is due to the definition of the surrogate
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function. The second inequality is a consequence of the fact that
x" ™ is a minimizer of C(x,x™)[8].

The iterative algorithm may be entrapped in the fixed points.
Therefore, we investigate the fixed points of the recursive rela-
tion here. Let x* be the fixed point of (22); in other words

* 1 H
X = T Ay ¢
According to (23), the fixed points of the relation can be zero or

nonzero depending on the absolute value of x;. We investigate
the fixed points for both cases. If x} = 0, we would have

X+ Al(y — Ax*)). (24

A

A7 Ax* 25
ALy A% <\ @5)
For the case of x} # 0, we would have
1
T=(xf+Al(y — Ax" 26
Xi= (G- Ay AX) oy @0
which results in
Al(y — Ax") = x] )\, 27)
According to (23), x! # 0 implies that
(ALY — A [ 24| s )
PR “AN )
Combining (27) and (28), we have
T
i 1+Xo
>r——r 29
‘Xll — 1 + AQ ( )
and
A2y /
(%)
Ay — Ax®)| > —F———— . 30
Ay - Ax)| 2 -5 (0)
Thus, the fixed points of (22) satisfy the following:
x; =0 [A}(y - Ax")| < /¢ 1+)m)
AL
. {TFag)
xp > YT (1)

A
R RVacxsvy)

= A} (y - AX)| =2 — 5,

It should be proved that the fixed points of (22) are its local
minima. Thus, being entrapped in a fixed point implies being
in a local minimum. The corresponding proof is given in the
following lemma.

Theorem 2 (Fixed Points-Local Minima): The fixed points
of (22) are the local minima of (16).

Proof 3: we should prove that

f(x* 4 0h) — f(x
According to (16), we have

f(X* +0h) - f(x)
>3 M(x} + Ohylo —

*)>0 V|oh| <e. (32)

%7 0) + A2 (0hy)? + 2X2x] Oh;

+20h; AT (Ax" — y). (33)

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 2, FEBRUARY 2015

We prove (32) for the two cases of (31), separately. First, we
investigate the case where x; = 0. Then, if dh; = 0, the term
is nonnegative. When dh; becomes nonzero, we would have

A1(10hi]o) + A2(8h;)? + 20h; A (AX* —y)
> A1(|0h; o) + A2 (0h;)?

AL
(o 2)

_ o >‘ 2
= <>\1 21/( /\2)311) + Ao (0hy)2.

Selecting |0h;| as follows, we can have the above term greater
than zero:

(34

jom,| < YMEEX), (39)
The second case is where
(o)
il > (36)
If \/%
hy] < S (37)

we can have |0h;| < |x;| which results in [x} + dh;[p = 1.
Thus, (34) translates to

AL(x} + 0hylo — 1) + A2(0hy)? + 2)0x; dh;
+20h; A7 (Ax* —y)

= X\2(9h;)? (38)

where the equality is due to (27). Taking ¢ as
min <\/)\1 T A)/2, /AT )/ (1 + )\2)), both (35)
and (37) would be satisfied. The lemma is thus proved.
The next step is to prove the convergence of the L»-IHT al-
gorithm.
Theorem 4 (Convergence): If f(x°) < oo and if ||A]|2 <
1, then the sequence x" defined by the iterative procedure in
(22) converges to a local minimum of (16).
Before proving the theorem, we present the following lemma.
Lemma 5: ¥¢ > 0, 3N such that

Vn > N, |[x"T - x|, <e.

n+1l XWH%

Proof 6: We that should prove that Z _ollx
converges by proving that it is bounded and monotonically in-
creasing. The monotinicity is proved trivially and the bounded-
ness results from

N
>t
n=0

1|2
2

(39)

N

< % Z (||Xn+1 o Xn”é B HA (Xn+1 o Xn) Hé) (40)
1 71;0

<52 () - ) (41)
" n=0

= 2 (160 — 1) < 2 (1) @)
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where C' is a lower bound on the spectrum of (I — A*A) and
the second inequality results from the proof of Lemma 1[8].
Proof 7 (Proof of Convergence Theorem): In

lemma 35, take ¢ < VAL +A) /(A +A2). I
x| > /A /(T X)) /(1 + A2) and [xPTM| = 0, then,
[lx" 1 — x™|| > +/A1/(1+ X2)/(1+ X2) which contradicts
lemma 5. Thus, [x7*] > A /(1+X2)/(14+X2) Ym > n

and the sequence x;' reduces to the Landweber algorithm
with guaranteed convergence [29]. Similarly if x* = 0, then
x;” =0 Vm > n and the similar convergence guarantee can
be given for this sequence. Therefore, the convergence of the
algorithm in (22) is proved.
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