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Abstract

An approximate and accurate enough multi-conductor transmission line model is developed for analysis of side-coupled metal-
insulator-metal (MIM) waveguides. MIM waveguides have been already modeled by single conductor transmission lines. Here,
the side coupling effects that exist between neighboring plasmonic structures are taken into account by finding appropriate values
for distributed mutual inductance and mutual capacitance between every two neighboring conductors in the conventional single-
conductor transmission line models. In this manner, multi-conductor transmission line models are introduced. Closed-form expres-
sions are given for the transmission and reflection of miscellaneous MIM plasmonic structures, e.g. dual-stop-band and band-pass
filters. In all examples, the results of the proposed model are compared against the fully numerical finite-difference time-domain
(FDTD) method. The results of the analytical model are in good agreement with the numerical results.
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1. Introduction

The characteristic feature of plasmonics is to confine the
electromagnetic energy within a sub-wavelength scale far be-
low the diffraction limit [1, 2, 3, 4]. As far as analysis and
design of plasmonic structures are concerned, such a strong
confinement has two opposite aspects. The negative side is the
necessity of going through time-consuming brute-force numer-
ical analysis, which does not impart much physical insight. The
positive side is the availability of accurate enough approximate
methods based on easy-to-solve distributed circuit networks,
which can facilitate the design procedure considerably [5, 6, 7].

Since the planar Metal-Insulator-Metal (MIM) waveguide
has been successfully modeled by a simple distributed circuit;
viz. a single conductor transmission line [5, 8], much atten-
tion is directed toward plasmonic structures that are made of
MIM waveguides. Namely, MIM bends [5], splitters [5, 7], de-
multiplexers [9, 10, 11, 12], stub filters [13, 14, 6], resonators
[15, 16], and junctions [13, 17, 18] are all successfully mod-
eled by replacing each waveguide section in the structure with
its corresponding single conductor transmission line. Recently,
the idea of using single conductor transmission line in model-
ing of plasmonic structures made of MIM waveguides has been
extended to model side coupling between two adjacent single
mode MIM waveguides in the structure, e.g. directional cou-
pler, and side coupled waveguide resonator [19, 20]. The ex-
tended model is made of two coupled single conductor trans-
mission lines and thus cannot account for the coupling effects
that exist among more than two neighboring MIM waveguides.
Although the coupling between non-adjacent MIM waveguides
is practically negligible, a multi-conductor transmission line

model is still needed to analyze structures such as dual-stop-
band filters [21], cavity based band-pass filters, and coupled
stub configurations.

Here, for the first time to the best of our knowledge, a multi-
conductor transmission line with distributed capacitance and in-
ductance matrices is introduced to model the coupling effects
that exist among more than two neighboring MIM waveguides.
The electrical characteristics of the multi-conductor transmis-
sion line in the proposed model are given by closed-form ex-
pressions. Thanks to the negligibility of the coupling between
non-adjacent MIM waveguides, the per-unit-length capacitance
and inductance matrices of the proposed multi-conductor trans-
mission line can be approximated by symmetric tridiagonal ma-
trices [22]. Every diagonal element of the matrix represents
the per-unit-length self-capacitance or self-inductance of one
of the conductors in the proposed multi-conductor transmis-
sion line model. Since each conductor in the model represents
one of the coupled MIM waveguides in the structure and since
self-coupling effect is reasonably weaker than mutual-coupling
effect, the diagonal elements associated with that conductor
can be approximately obtained in terms of the per-unit-length
self-capacitance and self-inductance of the single conductor
transmission line that would represent the same MIM waveg-
uide in the absence of coupling effect. Furthermore, the up-
per and lower diagonal elements are approximated by the per-
unit-length mutual-capacitance and mutual-inductance of the
already introduced two coupled single-conductor transmission
lines representing the coupling between adjacent MIM waveg-
uides in the structure. The success of the proposed model is
indebted to the fact that accurate analysis of side-coupling ef-
fects between neighboring MIM structures does not necessitate
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consideration of the below cut-off higher order modes. Rather,
consideration of the coupling between fundamental modes of
the structures, which are represented by the conductor lines of
the proposed multi-conductor transmission lines, is usually suf-
ficient. This fact is numerically demonstrated.

This paper is organized as follows: first, the formulation of
the proposed multi-conductor transmission line model, its pa-
rameters, and its current and voltage distributions, are given
by closed-form expressions. The proposed distributed circuit
model is then applied to analyze miscellaneous MIM structures,
viz. a dual-stop-band filter based on rectangular cavity res-
onators, a band-pass filter, and MIM waveguide with coupled
stubs. The accuracy of the proposed model in all cases is jus-
tified by the well-known finite-difference time-domain (FDTD)
method. Finally, the conclusions are drawn in section 4.

2. Formulation of the proposed model

The schematic view of the considered structure made of n
parallel MIM plasmonic waveguides is shown in Fig. 1. The
width of the ith waveguide is denoted by wi, and the distance
between ith and (i + 1)th waveguides is denoted by di. The per-
mittivity of the dielectric and metallic regions are represented
by εd, and εm, respectively. It is the aim of this section to pro-
pose an n-conductor transmission line model that accounts for
the coupling effects between the n parallel MIM waveguides in
the structure. This model is to be applied in analysis of miscel-
laneous devices in the following sections.

The telegrapher’s equations for the n-conductor transmission
line model read as [23]:

∂

∂z
V = − jωL I (1a)

∂

∂z
I = − jωC V (1b)

where ω stands for the angular frequency of the harmonic field,
V and I are voltage and current vectors whose ith elements rep-
resent transverse electric and magnetic fields of the ith MIM
waveguide, respectively:

V =
[
V1 V2 . . . Vn

]T
(2a)

I =
[
I1 I2 . . . In

]T
(2b)

In these expressions, the per-unit-length inductance; L =

[Li j]n×n, and capacitance; C = [Ci j]n×n, matrices of the n-
conductor transmission line model are to be found in terms of
wi, di, εd, εm, and ω. Inasmuch as L and C matrices do not
vary along the propagation direction; z, the voltage and current
distributions are given as:(

V
I

)
(z) = exp(−Gz)

(
V
I

)
(0) (3)

where

G = jω
(
0n×n L
C 0n×n

)
(4)

Figure 1: A typical structure made of n side-coupled MIM plasmonic waveg-
uides.

As already mentioned, the coupling effects between nonadja-
cent waveguides are usually negligible and thus the n-conductor
transmission line model can be approximated by neglecting
Li j and Ci j for |i − j| > 1. This is schematically shown in
Fig. 2, where the self-inductance and the self-capacitance of
the ith conductor, and the mutual-inductance and the mutual-
capacitance between the ith and (i+1)th conductors are denoted
by Lsi , Csi , Lmi , and Cmi , respectively. Applying Kirchhoff’s
voltage and current laws proves that the L and C matrices in
the telegrapher’s equations can be approximated by the follow-
ing tridiagonal matrices:

L ≈
[
Lsiδi j + Lmi

(
δi( j+1) + δ(i+1) j

)]
n×n

(5a)

C ≈
[(

Csi + Cm(i−1) + Cmi

)
δi j −Cmi

(
δi( j+1) + δ(i+1) j

)]
n×n

(5b)

in which δi j is the kronecker delta:

δi j =

1 if i = j
0 if i , j

(6)

It is worth noting that Lsi and Csi stand for the per-unit-length
self-inductance and the self-capacitance of the ith conductor in
the presence of the coupling between neighboring conductors,
and therefore, differ from the per-unit-length self-inductance
and the self-capacitance of the ith conductor in isolation. Still,
the coupling-induced perturbation of Lsi and Csi is weak enough
to justify resorting to the closed-form expressions that have
been already proposed for an isolated MIM waveguide [19]:

Csi = ε0εd/wi (7a)

Lsi = wi β
2
i /(ω

2ε0εd) (7b)

where βi is the complex propagation constant of the ith MIM
waveguide in isolation, and wi is its width normalized to the
unit length in the y direction [7].

Similarly, the coupling-induced perturbation of Lmi , and Cmi

caused by the presence of all other conductors (save the ith
and (i + 1)th conductors themselves) can be, to some good ex-
tent, neglected and thus the mutual-inductance and the mutual-
capacitance between the ith and (i + 1)th conductors can be
approximated by resorting to the closed-form expressions that
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Figure 2: The proposed n-conductor transmission line model for the structure
in Fig. 1. It is assumed that Li j = 0 and Ci j = 0 for |i − j| > 1.

have been already proposed for the mutual-inductance and the
mutual-capacitance between two adjacent waveguides [19]:

Lmi = g0i −

√
g2

0i
+ g1i (8a)

Cmi =
β2

ei
+ β2

oi
− β2

i − β
2
i+1

ω2
(
Lsi + Ls(i+1) − 2Lmi

) (8b)

in which

g0i =
1

4CsiCs(i+1)

[
(Csi + Cs(i+1) )(β

2
ei

+ β2
oi

)/ω2 − LsiC
2
si

− Ls(i+1)C
2
s(i+1)

]
−

(
Lsi + Ls(i+1)

)
/4 (9a)

g1i =
(βi βi+1)2 − (βei βoi )

2

ω4 CsiCs(i+1)

+
Lsi Ls(i+1) (Csi + Cs(i+1) )
CsiCs(i+1) (Lsi + Ls(i+1) )

×(
β2

ei
+ β2

oi
− β2

i − β
2
i+1

)
/ω2 (9b)

where βei and βoi denote the propagation constant of the even
and odd supermodes in a structure made of the ith and (i + 1)th
MIM waveguides when the rest of the waveguides are absent.

3. Applications of the proposed model

The accuracy of the proposed model in analysis of miscel-
laneous MIM structures, viz. a dual-stop-band filter based on
rectangular cavity resonators [21], a band-pass filter based on
slot cavity, and MIM waveguide with coupled stubs is numeri-
cally shown in this section.

It should be pointed out that all MIM structures including
those considered in this manuscript are three-dimensional in

practice. Therefore, they are inevitably made of the three-
dimensional counterpart of the MIM waveguide, viz. the plas-
monic slot waveguide [24, 25, 26]. Fortunately, the plasmonic
slot waveguide can be fabricated by using the standard nano-
fabrication techniques including electron beam lithography, fo-
cused ion milling, and etching processes [24, 27]. It should
be also noted that field effect modulation of charge carriers
in metal-oxide-silicon (MOS) geometry can successfully imi-
tate MIM waveguides and structures [28, 29]. Therefore, the
standard CMOS process can also be employed to realize MIM
structures.

The major deviation of the two-dimensional theoretical anal-
ysis in this paper from the experimental three-dimensional real-
ization would be due to the out-of-plane leakage from the struc-
ture, which is certain to occur at junctions and interfaces, e.g.
at bends, stubs, and splitters [24]. The out-of-plane leakage
is neglected in this work because the considered structures are
two-dimensional and therefore uniform along the out-of-plane
direction. Fortunately, the out-of-plane leakage becomes less
pronounced at longer wavelengths.

Through out this section, the well-known Drude model [3] is
employed for the permittivity of the metallic region:

εm(ω) = ε∞ −
ω2

p

ω2 − jωγ
(10)

The dielectric permittivity is set to εd = 1 (the relative per-
mittivity of vacuum), the relative permittivity of silver at very
high frequencies is ε∞ = 3.7, the bulk plasma frequency and
the collision frequency is respectively set to ωp = 1.38 × 1016

Hz, and γ = 2.73 × 1013 Hz [30]. The obtained results of the
proposed model are justified by two-dimensional FDTD solu-
tions. The FDTD simulations are carried out by using perfectly
matched layers (PMLs) boundary conditions and the grid sizes
of 2 nm.

3.1. Dual-stop-band plasmonic filter

As the first example, a typical dual-stop-band plasmonic fil-
ter based on two side-coupled nano cavities (SCNCs) [21] is
analyzed by using the proposed model. The schematic of the
structure is shown in Fig. 3(a). The widths of the upper SCNC,
the waveguide, and the lower SCNC are denoted by w1, w2, and
w3 respectively. The coupling length and the distances between
the waveguide and the upper and lower SCNCs are denoted by
l, d1, and d2 respectively.

The corresponding model of this structure is shown in Fig.
3(b). The upper SCNC, the waveguide, and the lower SCNC
are each represented by a transmission line whose per-unit-
length self-inductance and self-capacitance are denoted by Lsi ,
and Csi (i=1, 2, 3), respectively. In accordance with Eq. (7)
of the previous section, these per-unit-length circuit elements
can be written in terms of the complex propagation constants
of the individual MIM waveguides that form the two SCNCs
(β1 and β3) and the middle waveguide of the structure (β2).
The side coupling between the upper SCNC, the waveguide,
and the lower SCNC is modeled by considering the per-unit-
length mutual-inductance and mutual-capacitance between the
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Figure 3: (a) A typical dual-stop-band plasmonic filter based on side-coupled
nano cavities (SCNCs). (b) Its corresponding multi-conductor transmission line
model.

upper (lower) SCNC, and the waveguide. In accordance with
Eqs. (8) and (9) of the previous section, these per-unit-length
circuit elements can be written in terms of the complex prop-
agation constants of the even and odd supermodes supported
by the coupled MIM waveguides that represent the coupling
between the upper (lower) SCNC, and the waveguide. In this
fashion, the side-coupling effects are taken into account by a
three-conductor transmission line whose per-unit-length induc-
tance, L, and capacitance, C, matrices are as follows:

L ≈

 Ls1 Lm1 0
Lm1 Ls2 Lm2

0 Lm2 Ls3

 (11a)

C ≈

Cs1 + Cm1 −Cm1 0
−Cm1 Cm1 + Cs2 + Cm2 −Cm2

0 −Cm2 Cs3 + Cm2

 (11b)

Here, the per-unit-length mutual-inductance and mutual-
capacitance between the upper (lower) SCNC, and the waveg-
uide are denoted by Lm1 (Lm2 ), and Cm1 (Cm2 ), respectively.

As it is shown in Fig. 3(b), the transmission lines that cor-
respond to the upper and lower SCNCs should be of length l
and be terminated by appropriate load impedance, ZLi (i=1, 3).
Since the complex value of the appropriate load impedance at
the terminal ports of the transmission line should comply with
the reflection coefficient of the fundamental mode of the MIM
waveguide that forms the SCNC, and since that reflection can
be accurately approximated by the Fresnel’s reflection coeffi-
cient [6, 13], ZLi (i=1, 3) can be written as:

ZLi = Zwi

√
εd

εm
(12)

Figure 4: The transmitted power spectrum of the dual-stop-band filter in Fig.
3. The results of the proposed model and of the FDTD are plotted by solid and
dotted lines, respectively. Inset shows transverse magnetic field profiles at three
different wavelengths.

where Zwi is the characteristic impedance of the ith MIM
waveguide [5] and can be written as :

Zwi = wi
βi

ωε0εd
(13)

Now that the parameters of the multi-conductor transmission
line model are all given, the reflection; R, and transmission; T ,
coefficients of the dual-stop-band plasmonic filter shown in Fig.
3(a) can be easily obtained:

T = det(AT)/det(A) (14a)
R = det(AR)/det(A) (14b)

where

A =
[
A1 A2 A3 A4 A5 A6

]
(15a)

AT =
[
A1 b A3 A4 A5 A6

]
(15b)

AR =
[
A1 A2 A3 A4 b A6

]
(15c)

and

A1 =

(
ZL1 e1

e1

)
, A2 =

(
e2

e2/Zw2

)
, A3 =

(
ZL3 e3

e3

)
(16a)

A4 = E
(
ZL1 e1
−e1

)
, A5 = E

(
−e2

e2/Zw2

)
, A6 = E

(
ZL3 e3
−e3

)
(16b)

b = E
(

e2
e2/Zw2

)
, E = exp(−Gl) (16c)

e1 =

100
 , e2 =

010
 , e3 =

001
 (16d)

The accuracy of the above-mentioned expressions for a case
where w1 = 50 nm, w2 = 60 nm, w3 = 80 nm, d1 = 20 nm, d2
= 20 nm, and l = 225 nm is shown in Fig. 4, where the trans-
mission coefficient is plotted versus the free space wavelength
(solid) and is compared against the FDTD result (dotted).
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3.2. Plasmonic band-pass filter based on slot cavity

As another example, a typical band-pass plasmonic filter
based on a single SCNC is considered. The schematic of the
structure is shown in Fig. 5(a). In accordance with the figure,
the widths of the upper MIM waveguide, the SCNC, and the
lower MIM waveguide are denoted by w1, w2, and w3, respec-
tively. The coupling length between the SCNC and the MIM
waveguides is l1 and the length of the SCNC is l1 + l2. The dis-
tance between the SCNC and the upper and lower MIM waveg-
uides are d1, and d2, respectively.

The corresponding model of this structure is shown in Fig.
5(b). The upper and lower MIM waveguides, and the SCNC in
their between are each represented by a transmission line whose
per-unit-length self-inductance and self-capacitance are de-
noted by Lsi , and Csi (i=1, 2, 3), respectively. Once again, these
per-unit-length circuit elements can be written in terms of the
complex propagation constants of the individual MIM waveg-
uides that correspond to the upper and lower MIM waveguides
and the SCNC of the structure. The side-coupling between the
SCNC and the upper and lower MIM waveguides is then mod-
eled by considering the per-unit-length mutual-inductance and
mutual-capacitance between the upper (lower) MIM waveg-
uide, and the SCNC. They are respectively denoted by Lm1

(Lm2 ), and Cm1 (Cm2 ), and can be written in terms of the com-
plex propagation constants of the even and odd supermodes
supported by the coupled MIM waveguides that represent the
coupling between the upper (lower) MIM waveguide and the
SCNC. Much like the previous subsection, the side-coupling
effects are taken into account by a three-conductor transmis-
sion line whose per-unit-length inductance, L, and capacitance,
C, matrices are governed by Eqs. (11a) and (11b).

It is worth noting that the length of the three-conductor trans-
mission line is equal to the coupling length; l1, and differs from
the length of the SCNC; l1+l2. Therefore, the distributed circuit
that represents the SCNC is made of two sections. One section
is side coupled to the upper and lower MIM waveguides, and
is therefore part of the three-conductor transmission line whose
length is l1. The other section represents the uncoupled part
of the SCNC, and is therefore modeled by a single-conductor
transmission line whose length and per-unit-length inductance
and capacitance are l2, Ls2 , and Cs2 , respectively.

The transmission lines that represent the upper and lower
MIM waveguides are terminated at their right-hand-side port
by load impedances ZL1 , and ZL3 , respectively. The transmis-
sion line that represents the SCNC is terminated at its both ports
by load impedance ZL2 . The complex values of the appropriate
load impedances can be found by using Eq. (12).

Now that the parameters of the multi-conductor transmission
line model are all given, the reflection; R, and transmission; T ,
coefficients of the band-pass plasmonic filter shown in Fig. 5(a)
can be easily obtained:

T = det(AT)/det(A) (17a)
R = det(AR)/det(A) (17b)

Figure 5: (a) A typical band-pass plasmonic filter based on a side-coupled slot
cavity. (b) Its corresponding multi-conductor transmission line model.

where

A =
[
A1 A2 A3 A4 A5 A6

]
(18a)

AT =
[
A1 A2 A3 b A5 A6

]
(18b)

AR =
[
A1 A2 A3 A4 b A6

]
(18c)

and

A1 =

(
ZL1 e1

e1

)
, A2 =

(
Zine2

e2

)
, A3 =

(
ZL3 e3

e3

)
(19a)

A4 = E
(
−e1

e1/Zw1

)
, A5 = E

(
−e3

e3/Zw3

)
, A6 = E

(
ZL2 e2
−e2

)
(19b)

b = E
(

e3
e3/Zw2

)
, Zin = Zw2

ZL2 + jZw2 tan(β2l2)
Zw2 + jZL2 tan(β2l2)

(19c)

e1 =

100
 , e2 =

010
 , e3 =

001
 , E = exp(−Gl1) (19d)

The accuracy of the above-mentioned expressions for a band-
pass filter tuned at 0.7µm with parameters w1 = 50 nm, w2 = 50
nm, w3 = 50 nm, d1 = 30 nm, d2 = 30 nm, l1 = 205 nm, and
l2 = 0 nm is shown in Fig. 6, where the transmission coeffi-
cient is plotted versus the free space wavelength (solid) and is
compared against the FDTD result (dotted).

3.3. Plasmonic stub filter
Without losing generality, a typical plasmonic stub filter

made of an MIM waveguide of width w3, and two stubs of
widths w1, and w2 is considered. Fig. 7(a) shows the schematic
view of this structure. The lengths of the first and second stubs
are h + ∆h, and h, respectively. The distance between the two
stubs is denoted by d0.
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Figure 6: The transmitted power spectrum of the band-pass filter in Fig. 5.
The results of the proposed model and of the FDTD are plotted by solid and
dotted lines, respectively. Inset shows transverse magnetic field profiles at two
different wavelengths.

The corresponding model of this structure is shown in Fig.
7(b). The MIM waveguide is modeled by a single conductor
transmission line whose per-unit-length circuit elements are de-
noted by Ls3 and Cs3 . The terminations of the two stubs are
modeled by complex load impedances; ZL1 and ZL2 . It is worth
noting that ZL1 , ZL2 , Ls3 and Cs3 are all already given [see Eqs.
(7) and (12)]. In the conventional transmission line model [13],
the first and second stubs are modeled by two uncoupled single-
conductor transmission lines of length h + ∆h, and h, respec-
tively. The per-unit-length self-inductance and self-capacitance
of these two transmission lines; Lsi and Csi (i = 1, 2), are deter-
mined in terms of the propagation constants and widths of the
MIM waveguides that form the stub sections. What makes the
proposed model different from the conventional transmission
line model is that the coupling between the neighboring stubs
is no longer neglected. This could be a matter of consequence
when d0 is small enough to cause a strong coupling.

To include the coupling effects in the proposed model, the
per-unit-length mutual inductance, Lm1 , and mutual capaci-
tance, Cm1 , between the hitherto uncoupled single-conductor
transmission lines that represent the stub sections are taken
into account. Much like the previous subsections, these per-
unit-length mutual circuit elements can be found in terms of
the complex propagation constants of the even and odd super-
modes. These supermodes are supported by the coupled MIM
waveguides that represent the coupling between the neighbor-
ing stubs. In this manner, the first and second stubs are mod-
eled together; even though the extra length of the first stub is
left to be modeled by a single conductor transmission line of
length ∆h. Evidently, the per-unit-length self-inductance and
self-capacitance of this single-conductor transmission line are
Ls1 and Cs1 .

Two numerical examples are given. First, it is assumed that
w1 = 50 nm, w2 = 50 nm, w3 = 50 nm, h = 300 nm, ∆h = 0
nm, and d0 = 100 nm. The transmission coefficient of the struc-

Figure 7: (a) A typical MIM plasmonic structure with two neighboring stubs.
(b) Its corresponding multi-conductor transmission line model.

ture is obtained by using the proposed circuit model and the
FDTD method. The obtained results are plotted versus the free
space wavelength in Fig. 8(a). It is worth noting that the results
of the proposed model and the conventional model [13] where
the coupling effects are neglected virtually overlap. Second,
the distance between the neighboring stubs in the same struc-
ture is decreased to d0 = 20 nm. The transmission coefficient
of the structure is once again obtained by using the proposed
circuit model, the conventional transmission line model [13],
and the FDTD method. The obtained results are plotted versus
the free space wavelength in Fig. 8(b). This time, the results
of the conventional approach differ from the results of the pro-
posed model. Since the latter is more close to the FDTD results,

(a) (b)

Figure 8: The transmitted power spectrum of the structure in Fig. 7 when (a)
d0 = 100 nm and the coupling is weak, and (b) d0 = 20 nm and the coupling is
strong. The results of the proposed multi-conductor transmission line model, of
the conventional transmission line model, and of the FDTD method are plotted
by solid, dashed, and dotted lines respectively.
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Figure 9: (a) The structure of a plasmonic loop feedback. (b) The proposed
transmission line model for analyzing the structure.

the coupling effects should be included, particularly at shorter
wavelengths.

3.4. Plasmonic feedback configuration
Finally, a recently proposed structure having a plasmonic

feedback loop [31] is considered . The schematic view of this
structure is shown in Fig. 9(a). The corresponding multi-
conductor transmission line model of this structure is shown
in Fig. 9(b). It is not dissimilar to the multi-conductor trans-
mission line model of the structure in Fig. 7. Only this time
the two conductors of the transmission line model represent-
ing the coupled stub sections are not terminated by complex
load impedances. Rather, they are connected to each other
via a single conductor transmission line whose per-unit-length
self-inductance and self-capacitance; Ls4 and Cs4 , depend on
the propagation constant and width of the MIM waveguide that
forms the upper side of the square feedback loop.

As an example, it is assumed that h = 200 nm, d0 = 20 nm,
w1 = 50 nm, w2 = 50 nm, w3 = 50 nm, and w4 = 50 nm. The
transmission coefficient of the structure is obtained by using the
proposed circuit model and the FDTD method. The obtained
results are plotted versus the free space wavelength in Fig. 10.
They are in very good agreement with each other.

4. Conclusion

In this paper, a multi-conductor transmission line model
was proposed for miscellaneous side-coupled MIM plasmonic
structures. Closed-form expressions were given for the pa-
rameters of the proposed model. The accuracy of the pro-
posed model was assessed by using the FDTD method. It was

Figure 10: The transmitted power spectrum of the structure with square loop
feedback in Fig. 9. The results of the proposed model and of the FDTD are plot-
ted by solid and dashed lines, respectively. Inset shows the transverse magnetic
field profile at λ = 0.8 and 1.2 µm.

shown that the proposed model is capable of providing accu-
rate enough results. The results of the proposed model can be
obtained at almost no computational cost.

It is worth noting that the proposed model is also applicable
to non-plasmonic structures whenever the electromagnetic en-
ergy is highly confined, i.e. whenever the higher order modes
are below cut-off and thus do not play a critical role. One no-
ticeable example is the possibility of applying our method to
photonic crystal based devices and structures. Interestingly,
every single example in this manuscript has a photonic crys-
tal counterpart, which can be successfully modeled by similar
multi-conductor transmission lines. Although there have been
some efforts to model photonic crystal structures via single con-
ductor transmission line models [32, 33, 34, 35, 36], the idea
of using multi-conductor transmission lines has never been ap-
plied to photonic crystal structures.
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