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Circuit Model for Periodic Array of Slits With
Multiple Propagating Diffracted Orders

Elahe Yarmoghaddam, Ghazaleh Kafaie Shirmanesh, Amin Khavasi, and Khashayar Mehrany

Abstract—We propose an analytical circuit model for accurate
analysis of one-dimensional periodic array of metallic strips. The
proposed model is valid not only in subwavelength regime, but also
for wavelengths shorter than the period of structure. The working
frequency can reach the visible range and thus electromagnetic
properties of periodic arrays of nano-slits can be analyzed by the
proposed model. The proposed model remains valid for arbitrary
incident angles even when nonspecular diffracted orders become
propagating. Analytical expressions are derived explicitly in order
to describe the parameters of the proposed circuit model. The cir-
cuit model is derived by assuming that only one guided mode is
supported by the slits. The model can successfully explain the ex-
traordinary transmission phenomenon from microwave to optical
frequencies. The circuit model is presented for both major polar-
izations.

Index Terms—Circuit model, extraordinary transmission,
metallic grating, nano-slit arrays.

I. INTRODUCTION

E XTRAORDINARY transmission (EOT) has been a hot
topic for researches since its discovery [1]. Unusual elec-

tromagnetic responses such as EOT have been observed in peri-
odic metallodielectric structures [2]. These structures have been
investigated using numerical methods, namely finite difference
time domain (FDTD) [3], finite integration techniques [4], and
finite element method. However, these methods are very time
consuming and give no insight to the subject. Recently, ana-
lytical methods have been developed to analyze metallic grat-
ings. One of these analytical approaches is to use equivalent
circuit models that let us design and analyze periodic struc-
tures more easily and quickly. Circuit models are also useful for
providing an alternative understanding of important phenomena
such as EOT [5], [6]. They enable us to explain the EOT in the
sub-wavelength regime by using the impedance matching con-
cept. Previously, equivalent circuit models have been presented
for different periodic metallic structures including two-dimen-
sional array of holes [5] and one-dimensional array of slits [7].
In [7], the grating region is modeled by a transmission line to
account for the TEM mode propagating inside the slits which
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is terminated to a capacitor modeling the effect of the evanes-
cent diffracted orders. Nevertheless, in this model some essen-
tial parameters are not explicitly given in closed form expres-
sions. Moreover, the validity of the proposed model is limited
to normal incidence condition. Besides, this model is limited to
the cases in which the region above the grating is free space.
The mentioned problem was obviated in [8] in such a way that
the employed 1-D metallic grating was sandwiched between
two dielectric slabs with arbitrary indices of refraction, illumi-
nated by TM-polarized electromagnetic wave. In [2], consid-
ering the stated obstacles has yielded to further improvement
of the equivalent circuit model for such 1-D metallic gratings.
This model has two benefits: one is that it remains valid at ar-
bitrary incident angles, and the other is that all its parameters
are given by closed form expressions. Despite the progress that
has been hitherto made, the expressions used for capacitors in
the above-mentioned models are empirically obtained by using
results of full-wave simulations. Moreover, the validity of the
models is limited to the sub-wavelength regime, i.e., when all
nonspecular orders are below cutoff and there is only one prop-
agating diffracted order (the specular one) outside the grating
region.
In this paper, we propose a fully analytical circuit model for

the array of slits perforated in the metallic slabs to be used at
the frequencies at which higher diffracted orders can be propa-
gating. For TM polarization, our method is based on replacing
the capacitor in [2] with infinite number of parallel capacitors,
each representing a specific diffracted order. When a diffracted
order becomes propagating, its equivalent capacitor is converted
to a resistor.We illustrate that power loss in each resistor is equal
to the power transmitted to its corresponding diffracted order.
All the parameters of the proposed circuit model are given by
analytical expressions. The circuit model is also extended to the
TE polarization, but in this case the capacitors should be re-
placed by inductors. This method is also valid for different in-
cident angles, and it is relatively accurate up to visible range.
The circuit model is derived by assuming that the non-principal
guided modes of the slit are below cutoff. We verify the accu-
racy of the proposed model by comparing it with full-wave nu-
merical simulations. There is an excellent agreement between
the results of the proposed analytical model and the numerical
method.
The paper is organized as follows. In Section II, the proposed

circuit model for periodic array of metallic slits is introduced.
In Section III, we extend our model to visible range. Simulation
results are then given in Section IV, and Section V concludes
the paper.
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Fig. 1. (a) Periodic array of metallic strips under the incidence of a uniform
plane wave. (b) The structure with two semi-infinite regions: homogenous
medium and the metallic grating, used for extracting the shunt admittance
modeling the effect of the two regions’ interface. (c) Equivalent circuit model
for the structure depicted in (b).

II. CIRCUIT MODEL

In this section, we present our analytical circuit model for
periodic arrays of slits perforated in metallic slabs. We first
drive our model for working in low frequency regime, where
the metallic region can be approximated by perfect electric con-
ductor (PEC). Then in the next section, we extend our model
to the visible range by taking the plasmonic behavior of metals
into account.
Consider a periodic array of metallic slits filled with a dielec-

tric medium whose refractive index is and is sandwiched be-
tween two homogenous regions with refractive indices of
and . Fig. 1(a) illustrates the structure under study, with
being the period of the structure, the thickness of the metal
plate, and the spacing between the metallic strips.
First, for the sake of simplicity, we assume that the grating

region is semi-infinite as depicted in Fig. 1(b), to
extract the shunt admittance which models the effect of higher
order diffracted waves at the interface of the grating region and
the homogenous medium. Afterwards we extend our model to
the structure shown in Fig. 1(a).

A. TM Polarization

Assume that the structure is illuminated by a TM polarized
wave (the magnetic field in direction) whose incidence angle
is . The magnetic and tangential electric fields of the incident
wave in region 1 are (the time dependence of is assumed
here)

(1a)

(1b)

where the superscript relates to the wave propagation in
direction, and superscript relates to the propagation in

opposite direction. The first subscript (1) indicates the region
where the fields are expanded. The second subscript corre-
sponds to the order of the diffracted wave [9]. Besides,
and are the wave-vector components in and directions
in the first region and are given by

(2)

(3)

where

(4)

and is the wavenumber in free space, and is the
free space wavelength. The component of the wavevector,

is either positive real (propagating wave) or negative
imaginary (evanescent wave).
Moreover, in (1b),

(5)

is the wave admittance of the th diffracted order in the region
1, where is the permittivity of the first medium, and
is the angular frequency with being the frequency [9]. In re-
gion 2, by assuming that the slit is single mode, the electromag-
netic fields are

(6a)

(6b)

Hence, the validity of the proposed circuit model is limited to
the frequency range which is below the cutoff frequency of the
first higher order mode inside the slits. This condition requires
that [2]. In (6), is the propagation constant of
the TEM mode supported by a parallel plate waveguide and is
obtained by

(7)

Furthermore, the wave admittance of medium 2 with permit-
tivity is given by

(8)

By applying the standard boundary conditions at , i.e., the
continuity of the tangential electric field at every point of unit
cell and continuity of the tangential magnetic field at slit loca-
tions, the reflection coefficient of the structure can be obtained
as follows.
Applying the continuity of the tangential electric fields, by

using (1a) and (6a), leads to the following relations:

(9)

(10)
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which are obtained by multiplying the electric fields to
and taking the integral of both sides over one period.
Similarly, applying the continuity of the tangential magnetic

fields by using (1b) and (6b), and taking the integral of both side
over one slit width, leads to

(11)

where

(12)

Now combining (9), (10) and (11) we have the reflection coef-
ficient of the zeroth (specular) diffracted order

(13)

Equation (13) resembles the reflection coefficient in the circuit
shown in Fig. 1(c), which is given by [9]

(14)

Comparison of (13) and (14) gives and

(15)

which are corresponding to the characteristic admittances of
regions 1 and 2, respectively [9]. It is worth noticing that for
normal incidence the expression given for the admittance of
the grating region in the previous works is recovered [7], [2].
However, for nonzero incident angles the equivalent admittance
should be corrected as presented in this work.
In (14), that accounts for the evanescent fields on the

surface of the structure [9], is given by

(16)

Therefore, can be considered as infinite number of parallel
capacitors each of them is calculated by

(17)

where is the capacitor corresponding to the th diffracted
order, and according to (17) when the th diffracted order be-
comes propagating, its corresponding capacitance becomes pure
imaginary and turns out to a resistor. We demonstrate that the
power dissipated in each resistor is equal to the power trans-
mitted to its corresponding diffracted order. To substantiate this,

first, we assume that th diffracted order has become propa-
gating; therefore, is changed to ; then we
calculate the normalized power dissipated in , and we show
that it is equal to the diffraction efficiency of the th diffracted
order.
The voltage and current on the left transmission line in the

equivalent circuit are obtained by [10]

(18a)

(18b)

where and . Hence, the incident
power is

(19)

Furthermore, the voltage across is

(20)

and thus the power dissipated in can be easily calculated as

(21)

and finally the normalized power dissipated in is

(22)

Substituting and and after some simplifications we have

(23)

On the other hand, the diffraction efficiency which is the ratio
of the diffracted power to the incident one is [11]

(24)

where is the reflection coefficient of the th reflected order
which is obtained from (9) and (10), and (13):

(25)

Accordingly, is simplified to

(26)

Therefore, power dissipated in is obviously equal to the
diffraction efficiency of the th diffracted order.
Now, we can present appropriate circuit model (Fig. 2) for

the structure shown in Fig. 1(a). In this circuit, and
where and are obtained using

(5) and (12), respectively, by substituting the corresponding pa-
rameters of the third region, and other parameters have been
already given.
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Fig. 2. Proposed circuit model for the structure shown in Fig. 1(a).

B. TE Polarization

For obtaining the circuit model for TE polarization, similar to
the TM polarization, at first, we define the electric and magnetic
fields in each region. In region 1, the electric and magnetic fields
are given as

(27a)

(27b)

where

(28)

is the wave admittance of th diffracted order in region 1.
In region 2, by assuming that there is only the first TE mode

of the parallel plate waveguide, the electromagnetic fields are

(29a)

(29b)

In this case, the validity of the proposed circuit model is lim-
ited to the frequency range below the cutoff frequency of the

mode inside the slits. This condition requires that
[10]. In (29), is the propagation constant of the first TE mode
supported by a parallel plate waveguide and is obtained by

(30)

Furthermore, the wave admittance of medium 2 is given by

(31)

Like the TM polarization, applying the continuity of the tan-
gential electric field at and multiplying the equation by

and taking the integral of both sides over one period,
leads to

(32)

(33)

where

(34)

Similarly, applying the continuity of the tangential magnetic
field at and multiplying the equation by and
taking the integral of both sides over one slit width, we have

(35)

where is

(36)

By using (32), (33), and (35), the reflection coefficient of the
zeroth (specular) diffracted order can be written as

(37)

Comparison of (37) and (14) gives and

(38)

(39)

can be considered as a series of infinite number of parallel
inductors whose inductance is

(40)

Similar to the TM case, when the th diffracted order be-
comes propagating, its corresponding inductance becomes pure
imaginary and turns out to a resistor.

III. EXTENSION TO THE VISIBLE RANGE

In the previous section, we obtained our model for working in
low frequency regime; accordingly, we approximated metallic
strips by PEC. Nevertheless, if the wavelength of incident plane
wave becomes smaller and close to near infrared and optical
ranges, our model is not valid. To extend our model to the men-
tioned frequency ranges, we have to modify the propagation
constant of the grating region. We do this by considering the
propagation constant of MIM waveguide whose metal has
a complex permittivity obtained from Drude model calculated
by [12]

(41)

where is dielectric constant, is angular frequency, is
plasma frequency of the free electron gas, and is characteristic
collision frequency. The sought-after propagation constant is
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Fig. 3. (a) Diffraction efficiency of the first reflected order obtained by using
rigorous full wave solution [13], [14] (dashed line), power dissipated in
calculated by using proposed circuit model (solid line). (b) The diffraction effi-
ciency of the first transmitted order obtained by using rigorous full wave solution
[13], [14] (dashed line), power dissipated in resulted by using proposed cir-
cuit model (solid line), versus normalized frequency at normal incidences. The
grating parameters are: m, m, and

m. The grating illuminated by a TM polarized incident plane wave.

obtained by solving the nonlinear equation of (42). Note that we
consider only fundamental odd mode which does not exhibit a
cutoff for vanishing core layer thickness [12]:

(42)

where and are relative permittivity of the insulator and
metal, respectively. Besides, and are equal to

(43)

Note that other parameters of this circuit model are the same as
to the model described in Section II. In this way, we can analyze
electromagnetic properties of periodic arrays of nano-slits by
the proposed model.

IV. SIMULATION RESULTS

In this section, the accuracy of the proposed model is verified
through some numerical examples. For rigorous results stable
implementation of Fourier modal method with adaptive spa-
tial resolution is used [13], [14] which has been demonstrated

Fig. 4. (a) Diffraction efficiency of the second reflected order obtained by using
rigorous full wave solution [13], [14] (dashed line), power dissipated in
calculated by using proposed circuit model (solid line). (b) The diffraction ef-
ficiency of the second transmitted order obtained by using rigorous full-wave
solution [13], [14] (dashed line), power dissipated in resulted by using pro-
posed circuit model (solid line), versus normalized frequency at normal inci-
dence. The grating parameters are: m,

m, and m. The grating illuminated by a TM polarized
incident plane.

its applicability from microwave frequencies [13] up to vis-
ible range [15]. This method solves Maxwell’s equations rig-
orously, and its accuracy have been verified with experimental
results [13]. For rigorous simulation of PEC, a conductor with
sufficiently high conductivity is assumed.
As the first numerical example, in accordance with Fig. 1(a),

we set m, m,
and m. The diffraction efficiency of the first re-
flected order of the structure, when illuminated by a TM polar-
ized normal incident plane wave is plotted in Fig. 3(a), which is
obtained by using the rigorous full-wave solution of [13], [14]
(dashed line), and by the proposed circuit model (solid line)
versus the normalized frequency . When the first dif-
fracted order becomes propagating (in this case, for ),
its equivalent capacitors ( and ) convert to resistors (
and ). Fig. 3(a) demonstrates that the diffraction efficiency of
the first reflected order obtained by the rigorous approach vir-
tually overlaps with the power dissipated in ; and the same
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Fig. 5. Transmitted power through a grating illuminated by a TM polarized
incident plane wave versus normalized frequency calculated by the rigorous
approach of [13], [14] (dashed line), proposed circuit model (solid line). The
structure parameters are: m, m,
and m. The grating is under normal incidence.

Fig. 6. Transmitted power through a grating illuminated by a TM polarized
incident plane wave versus normalized slit width calculated by the rigorous ap-
proach of [13], [14] (dashed line), proposed model (solid line). The grating pa-
rameters are: m, and m. The
grating is under normal incidence. The normalized frequency is .

is true for the diffraction efficiency of the first transmitted order
as depicted in Fig. 3(b). It is noticeable that in accordance with
the period of the structure and the definition of the normalized
frequency, the working frequency range is 0–4.5 THz.
In Fig. 4(a) and (b), the diffraction efficiencies of the second

reflected and transmitted orders of the structure, when illumi-
nated by the TM polarized normal incident plane wave, are
plotted versus normalized frequency, respectively. Moreover,
in Fig. 5, we have plotted the power transmission of the struc-
ture versus normalized frequency at normal incidence with
consideration of all diffracted order. Excellent agreement is
again observed. The results are obtained by using equivalent
circuit model (solid line) and the rigorous approach of [13],
[14] (dashed line).
The performance of the circuit model is also verified for

different slit widths and incident angles. The transmitted power
in the previous example is once again plotted versus the nor-
malized slit width and incident angle in Figs. 6 and
7, respectively. The normalized frequency in these figures is

Fig. 7. Transmitted power through a grating illuminated by a TM polarized
incident plane wave versus incident angle calculated by the rigorous approach of
[13], [14] (dashed line) and the circuit model (solid line). The grating parameters
are: m, m, and

m. The normalized frequency is .

Fig. 8. Transmitted power through a grating illuminated by a TM polarized
incident plane wave versus normalized frequency calculated by the rigorous
approach of [13], [14] (dashed line) and proposed circuit model (solid line).
The grating parameters are: m, m,
and m. The grating is under normal incidence.

( THz). The results obtained by using the
proposed circuit model (solid line) is compared against those
obtained by using the rigorous approach of [13], [14] (dashed
line). It should be noticed that due to the excitation of higher
order modes inside the slits for normalized slit width of larger
than 0.714, the circuit model lose its accuracy as it is seen in
Fig. 6.
Previous example was in low-frequency regime; now, for

demonstrating the validity of our proposed model in the visible
range, we set m, m,
and m, and we consider Drude model for Aluminum
that and [16].
The power transmission of the structure versus normalized
frequency at normal incidence is plotted in Fig. 8. In this
figure, dashed line represents the results obtained by rigorous
approached of [13], [14], and solid line shows the results
of the proposed circuit model. It is obvious from this figure
that the proposed model is fairly accurate in the visible range

( THz THz). Therefore,
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Fig. 9. Transmitted power through a grating illuminated by a TE polarized in-
cident plane wave versus normalized frequency calculated by the rigorous ap-
proach of [13], [14] (dashed line), proposed circuit model (solid line). The struc-
ture parameters are: m, m,
and m. The grating is under normal incidence.

Fig. 10. Transmitted power through a grating illuminated by a TE polarized
incident plane wave versus normalized slit width calculated by the rigorous ap-
proach of [13], [14] (dashed line), proposed model (solid line). The grating pa-
rameters are: m and m. The
normalized frequency is . The grating is under normal incidence.

the proposed model can be used in this range and it can suc-
cessfully explain the EOT.
The final example verifies the accuracy of the proposedmodel

for TE polarization. In Fig. 9, we have plotted the power trans-
mission of the structure shown in Fig. 1(a) versus normalized
frequency at normal incidence with consideration of all dif-
fracted orders. The structure parameters are:

m, m, and m. In
Fig. 9, the dashed line shows rigorous full-wave simulations,
and the solid line represents the result obtained by the proposed
circuit model. Since higher modes are excited inside the slits at
higher frequencies, we restrict ourselves to the frequency range
of 0–1.5 THz.
We also plot the transmission of the previous example versus

the incident angle and normalized slit width in Figs. 10 and 11,
respectively. In these two figures, the normalized frequency is
set to ( THz).

Fig. 11. Transmitted power through a grating illuminated by a TE polarized
incident plane wave versus incident angle calculated by the rigorous approach of
[13], [14] (dashed line) and the circuit model (solid line). The grating parameters
are: m, m, and m.
The normalized frequency is .

V. CONCLUSION

In conclusion, we proposed an equivalent circuit model
for modeling one-dimensional periodic array of metallic slits
which is valid even for wavelength smaller than the period of
the structure. The proposed model is obtained by assuming only
one guided mode inside the slits. Furthermore, it was assumed
that all diffracted orders can be propagating; consequently, in
TM polarization, the proposed circuit model consists of infinite
number of parallel capacitors, each representing a specific dif-
fracted order. The capacitance of the mentioned capacitors has
been given by an analytical expression. We have been shown
that when a higher diffracted order becomes propagating,
its equivalent capacitor converts to a resistor and the power
dissipated in each resistor is equal to the power transmitted to
its corresponding diffracted order.
The model was also extended to the TE polarization and it

was demonstrated that the capacitors should be replaced by
inductors.
The simulation results of the introduced circuit model are in

almost complete agreement with those obtained by a rigorous
method. It was also shown that the proposed model is valid from
very low frequencies up to the visible range.
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