Favorite Scientists



















Maxwell
James Clerk Maxwell
(13 June 1831 – 5 November 1879) was a Scottish scientist in the field of mathematical physics. His most notable achievement was to formulate the classical theory of electromagnetic radiation, bringing together for the first time electricity, magnetism, and light as different manifestations of the same phenomenon.


Maxwell's equations for electromagnetism have been called the "second great unification in physics" after the first one realised by Isaac Newton. With the publication of "A Dynamical Theory of the Electromagnetic Field" in 1865, Maxwell demonstrated that electric and magnetic fields travel through space as waves moving at the speed of light. He proposed that light is an undulation in the same medium that is the cause of electric and magnetic phenomena. The unification of light and electrical phenomena led his prediction of the existence of radio waves. Maxwell is also regarded as a founder of the modern field of electrical engineering.

♠ ♣ ♠ ♣ ♠ ♣ ♠ ♣



Maxwell
Albert Einstein
( 14 March 1879 – 18 April 1955) was a German-born theoretical physicist who developed the theory of relativity, one of the two pillars of modern physics (alongside quantum mechanics). His work is also known for its influence on the philosophy of science. He is best known to the general public for his mass–energy equivalence formula E = mc^2, which has been dubbed "the world's most famous equation". He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect", a pivotal step in the development of quantum theory. Near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led him to develop his special theory of relativity during his time at the Swiss Patent O ffice in Bern (1902–1909). He subsequently realized that the principle of relativity could be extended to gravitational fields, and published a paper on general relativity in 1916 introducing his theory of gravitation. He continued to deal with problems of statistical mechanics and quantum theory, which led to his explanations of particle theory and the motion of molecules. He also investigated the thermal properties of light and the quantum theory of radiation, the basis of laser, which laid the foundation of the photon theory of light. In 1917, he applied the general theory of relativity to model the structure of the universe.

♠ ♣ ♠ ♣ ♠ ♣ ♠ ♣


Maxwell
Joseph Ritter von Fraunhofer
(6 March 1787 – 7 June 1826) was a Bavarian physicist and optical lens manufacturer. He made optical glass and achromatic telescope objective lenses, invented the spectroscope, and developed diffraction grating. In 1814, he discovered and studied the dark absorption lines in the spectrum of the sun now known as Fraunhofer lines. One of the most difficult operations of practical optics during the time period of Fraunhofer's life was accurately polishing the spherical surfaces of large object glasses. Fraunhofer invented the machine which rendered the surface more accurately than conventional grinding. He also invented other grinding and polishing machines and introduced many improvements into the manufacture of the different kinds of glass used for optical instruments, which he always found to have flaws and irregularities of various sorts. In 1811, he constructed a new kind of furnace, and during his second melting session when he melted a large quantity of glass, he found that he could produce flint glass, which, when taken from the bottom of a vessel containing roughly 224 pounds of glass, had the same refractive power as glass taken from the surface. He found that English crown glass and German table glass both contained defects which tended to cause irregular refraction. In the thicker and larger glasses, there would be even more of such defects, so that in larger telescopes t his kind of glass would not be fit for objective lenses. Fraunhofer accordingly made his own crown glass. It was thought that the accurate determination of power for a given medium to refract rays of light and separate the different colors which they contain was impeded by the absence of precise boundaries between the colors of the spectrum, making it difficult to accurately measure the angle of refraction. To address this limitation, Fraunhofer performed series of experiments for the purpose of producing homogeneous light artificially, and unable to effect his object in a direct way, he did so by means of lamps and prisms.
The German research organization Fraunhofer Society is named after him and is Europe's biggest Society for the Advancement of Applied Research.

♠ ♣ ♠ ♣ ♠ ♣ ♠ ♣


Maxwell
Heinrich Rudolf Hertz
(22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism. The unit of frequency, cycle per second, was named the "Hertz" in his honor.
His father was Gustav Ferdinand Hertz. His mother was Anna Elisabeth Pfefferkorn. While studying at the Gelehrtenschule des Johanneums in Hamburg, Hertz showed an aptitude for sciences as well as languages, learning Arabic and Sanskrit. He studied sciences and engineering in the German cities of Dresden, Munich and Berlin, where he studied under Gustav R. Kirchhoff and Hermann von Helmholtz. In 1880, Hertz obtained his PhD from the University of Berlin, and for the next three years remained for post-doctoral study under Helmholtz, serving as his assistant. In 1883, Hertz took a post as a lecturer in theoretical physics at the University of Kiel. In 1885, Hertz became a full professor at the University of Karlsruhe. In 1886, Hertz married Elisabeth Doll, the daughter of Max Doll, a lecturer in geometry at Karlsruhe. They had two daughters: Johanna, born on 20 October 1887 and Mathilde, born on 14 January 1891, who went on to become a notable biologist. During this time Hertz conducted his landmark research into electromagnetic waves. Hertz took a position of Professor of Physics and Director of the Physics Institute in Bonn on 3 April 1889, a position he held until his death. During this time he worked on theoretical mechanics with his work published in the book Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt (The Principles of Mechanics Presented in a New Form), published posthumously in 1894.

♠ ♣ ♠ ♣ ♠ ♣ ♠ ♣



Max Planck
Max Karl Ernst Ludwig Planck
23 April 1858 – 4 October 1947)was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many contributions to theoretical physics, but his fame as a physicist rests primarily on his role as the originator of quantum theory, which revolutionized human understanding of atomic and subatomic processes. In 1948, the German scientific institution the Kaiser Wilhelm Society (of which Planck was twice president) was renamed the Max Planck Society (MPS). The MPS now includes 83 institutions representing a wide range of scientific directions. With the completion of his habilitation thesis, Planck became an unpaid Privatdozent (German academic rank comparable to lecturer/assistant professor) in Munich, waiting until he was offered an academic position. Although he was initially ignored by the academic community, he furthered his work on the field of heat theory and discovered one after another the same thermodynamical formalism as Gibbs without realizing it. Clausius's ideas on entropy occupied a central role in his work. In April 1885 the University of Kiel appointed Planck as associate professor of theoretical physics. Further work on entropy and its treatment, especially as applied in physical chemistry, followed. He published his Treatise on Thermodynamics in 1897. He proposed a thermodynamic basis for Svante Arrhenius's theory of electrolytic dissociation. In 1889 he was named the successor to Kirchhoff's position at the Friedrich-Wilhelms-Universität in Berlin – presumably thanks to Helmholtz's intercession – and by 1892 became a full professor. In 1907 Planck was offered Boltzmann's position in Vienna, but turned it down to stay in Berlin. During 1909, as a University of Berlin professor, he was invited to become the Ernest Kempton Adams Lecturer in Theoretical Physics at Columbia University in New York City. A series of his lectures were translated and co-published by Columbia University professor A. P. Wills. He retired from Berlin on 10 January 1926 and was succeeded by Erwin Schrödinger.

♠ ♣ ♠ ♣ ♠ ♣ ♠ ♣


Maxwell
Hermann Ludwig Ferdinand von Helmholtz
(August 31, 1821 – September 8, 1894) was a German physician and physicist who made significant contributions in several scientific fields. The largest German association of research institutions, the Helmholtz Association, is named after him. In physiology and psychology, he is known for his mathematics of the eye, theories of vision, ideas on the visual perception of space, color vision research, and on the sensation of tone, perception of sound, and empiricism in the physiology of perception. In physics, he is known for his theories on the conservation of energy, work in electrodynamics, chemical thermodynamics, and on a mechanical foundation of thermodynamics. As a philosopher, he is known for his philosophy of science, ideas on the relation between the laws of perception and the laws of nature, the science of aesthetics, and ideas on the civilizing power of science. His first important scientific achievement, an 1847 treatise on the conservation of energy, was written in the context of his medical studies and philosophical background. His work on energy conservation came about while studying muscle metabolism. He tried to demonstrate that no energy is lost in muscle movement, motivated by the implication that there were no vital forces necessary to move a muscle. This was a rejection of the speculative tradition of Naturphilosophie which was at that time a dominant philosophical paradigm in German physiology.
<

♠ ♣ ♠ ♣ ♠ ♣ ♠ ♣