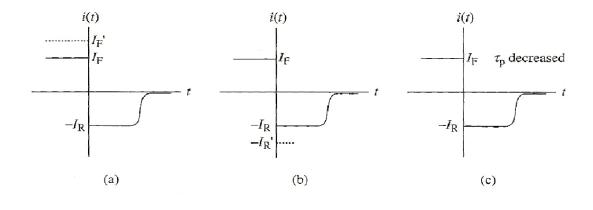
1:

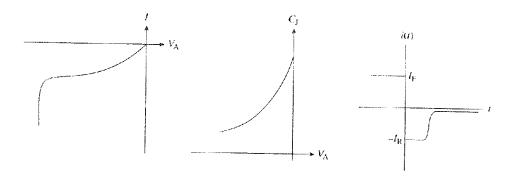
P: Use the qualitative insight gained into the diode response to predict how key factors are expected to affect the observed i-t transient. The accuracy of the predictions will be checked after working out the quantitative theory.


The figures after the problem statement contain a base-line sketch of an i-t transient. Using a dashed line, sketch the expected modification to the base-line transient if as indicated on the figures:

(a) $I_{\rm F}$ is increased to $I_{\rm F}^{\prime}$.

(b) $I_{\rm R}$ is increased to $I'_{\rm R}$.

(c) $\tau_{\rm p}$ is decreased (made shorter).


Explain how you arrived at the modified i-t sketches.

2:

The reverse-bias current-voltage $(I-V_A)$, junction capacitance (C_I-V_A) , and turn-off transient (i-t) characteristics derived from a p^+ -n Si step junction diode maintained at room temperature are sketched to the right. After reproducing the figures, answer the following questions by adding a *dashed line* to the appropriate characteristic. Note that an answer of *no effect* (a dashed line the same as the given characteristic) is possible. In such cases write *no effect*.

- (a-c) Roughly indicate how the $I-V_A$, C_J-V_A , and *i-t* characteristics are modified if the *n*-side doping (N_D) is *increased* by a factor of 2. All other parameters remain the same.
- (d-f) Roughly indicate how the $I-V_{\lambda}$, $C_{j}-V_{\lambda}$, and i-t characteristics are modified if the minority carrier lifetime on the *n*-side (τ_{p}) and the effective depletion-region generation lifetime (τ_{0}) are *increased* by a factor of 2. All other parameters remain the same.

3:

- . The hole lifetime of a p^+n diode is measured by the diode-recovery method.
 - (a) For $I_f = 1$ mA and $I_r = 2$ mA, t_s is found to be 3 ns in an oscilloscope with a 0.1-ns rise time. Find τ_p .
 - (b) If the fast scope in (a) is not available and you have to use a slower scope with a 10-ns rise time, how can you make an accurate measurement? Describe your result.