- 1. A uniformly doped silicon npn bipolar transistor is to be biased in the forward-active mode with the B-C junction reverse biased by 3v. The metallurgical base width is 1.10  $\mu$ m. The transistor dopings are  $N_E = 10^{17}$  cm<sup>-3</sup>,  $N_B = 10^{16}$  cm<sup>-3</sup>, and  $N_c = 10^{15}$  cm<sup>-3</sup>. (a) For T = 300 K, calculate the B-E voltage at which the minority carrier electron concentration at x = 0 is 10 percent of the majority carrier hole concentration. (b) At this bias, determine the minority carrier hole concentration at x'= 0. (c) Determine the neutral base width for this bias.
- 2. A silicon npn bipolar transistor is uniformly doped and biased in the forward-active region. The neutral base width is  $x_B = 0.8 \ \mu m$ . The transistor doping concentrations are  $N_E = 5 \times 10^{17} \text{ cm}^{-3}$ ,  $N_B = 10^{16} \text{ cm}^{-3}$ , and  $N_c = 10^{15} \text{ cm}^{-3}$ . (a) Calculate the values of  $p_{E0}$ ,  $n_{B0}$ . and  $p_{C0}$ . (b) For  $V_{BE} = 0.625$  V, determine  $n_B$  at x=0 and  $p_E$  at x' = 0. (c) Sketch the minority carrier concentrations through the device and label each curve.
- 3. Consider a uniformly doped npn bipolar transistor at T = 300 K with the following parameters:

| $N_E = 10^{18} \text{ cm}^{-3}$ | $N_B = 5 \times 10^{16} \text{ cm}^{-3}$ | $N_c = 10^{15} \text{ cm}^{-3}$  |
|---------------------------------|------------------------------------------|----------------------------------|
| $D_E = 8 \text{ cm}^2/\text{s}$ | $D_B = 15 \text{ cm}^2/\text{s}$         | $D_C = 12 \text{ cm}^2/\text{s}$ |
| $\tau_{E0} = 10^{-8} \text{ s}$ | $\tau_{B0} = 5 \times 10^{-8} \text{ s}$ | $\tau_{C0} = 10^{-8} \text{ s}$  |
| $x_E = 0.8 \ \mu \mathrm{m}$    | $x_B = 0.7 \ \mu \mathrm{m}$             |                                  |

Drive equation for  $J_{Ep}$  considering  $x_E$ . For  $V_{BE} = 0.60$  V and  $V_{CE} = 5$  V, calculate (*a*) the currents  $J_{Ep}$ ,  $J_{En}$ , and  $J_{Cn}$  (*b*) the current gain factors  $\gamma$ ,  $\alpha_T$ ,  $\alpha$ , and  $\beta$ .

4. Three npn bipolar transistors have identical parameters except for the base doping concentrations and neutral base widths. The base parameters for the three devices are as follows:

| Device | Base doping     | Base width         |
|--------|-----------------|--------------------|
| А      | $N_B = N_{B0}$  | $x_B = x_{B0}$     |
| В      | $N_B = 2N_{B0}$ | $x_B = x_{BO}$     |
| С      | $N_B = N_{B0}$  | $x_B = 0.5 x_{B0}$ |

(The base doping concentration for the B device is twice that of A and C, and the neutral base width for the C device is half that of A and B.)

(*a*) Determine the ratio of the emitter injection efficiency of (*i*) device B to device A and (*ii*) device C to device A.

(*b*) Repeat part (*a*) for the base transport factor.

(c) Which device has the largest common-emitter current gain  $\beta$ ?

5. The symmetrical  $p^+-n-p^+$  transistor is connected as a diode in the four configurations shown. Assume that V >> kT/q. Sketch  $\delta p(x_n)$  in the base region for each case. Which connection seems most appropriate for use as a diode? Why?



6. The base doping in a diffused n<sup>+</sup>-p-n bipolar transistor can be approximated by an exponential

$$N_B = N_B(0)exp\left(-ax/x_B\right)$$

where *a* is a constant and is given by

$$a = \ln \left( N_B(0) / N_B(x_B) \right)$$

(a) Show that, in thermal equilibrium, the electric field in the neutral base region is a constant.

(*b*) Indicate the direction of the electric field. Does this electric field aid or retard the flow of minority carrier electrons across the base?

(c) Derive an expression for the steady-state minority carrier electron concentration in the base under forward bias. Assume no recombination occurs in the base. (Express the electron concentration in terms of the electron current density.)