VLSI Interconnect – HW01 – due 21 Farvardin

The goal is this HW is to get familiar with the trend of VLSI technology. Use latest ITRS2015 reports available at <u>http://www.itrs2.net/itrs-reports.html</u> or

<u>https://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/</u>, to answer the following questions. Use older versions of ITRS for the items not showed in ITRS2015.

1. Descriptions:

- Describe following terms briefly: "Ideal MOS Transistor", "2.5Dvs. 3D Integration", "beyond CMOS options",
- Draw three different structures of TSVs: First, Middle, and Last.

2. Minimum Feature Size

- What is the difference between "Flash 1/2 pitch", "DRAM 1/2 pitch", "MPU 1/2 pitch", "Printed Gate Length", and "Physical Gate Length"?
- Make a plot comparing these parameters as a function of year.

3. Oxide Thickness

• Make a plot of T_{OX} "transistor oxide thickness" and "gate leakage per unit micron" as a function of year.

4. Supply Voltage (V_{DD})

 Make a plot of "V_{DD} projections" and the ratio of the threshold voltage (V_T) to the supply voltage (V_{DD}) for different processors as a function of year.

5. Drive Current (I_{ON}) vs. Off Current (I_{OFF})

- Make a plot of the I_{ON} current (in mA/µm) as a function of year.
- Make a plot of the I_{OFF} current (in mA/µm) as a function of year.
- Make a plot of the I_{ON}/I_{OFF} as a function of year.

6. CV/I Metric, Clock Frequency

• Make a plot of the "t = CV/I metric" and "T = 1/f" as a function of year. (t = CV/I is called the intrinsic delay and f is the on-chip local clock)

7. Chip Size, Power Dissipation

- Make a plot of the *P* "power dissipation" projected for the next generations. Given that you know the supply voltage projections, find the " I_{avg} =average current per gate" for different generations. Knowing that " I_G =current per logic gate" is *k* times "average current per gate". Plot I_G as a function of year for k = 10.
- Make a plot of the "A=chip size" at production as a function of year. Knowing the number of transistors (N_T) for each generation and assuming that (by average) each gate consists of 6 transistors, relate " G_P =gate pitch" to A and N_T . Plot G_P =gate pitch" as a function of year.

(Extra credit) Having an estimation about wire length distribution, Assume the same chip being
manufactured in 3D technology with 4 active layers of devices with total chip footprint reduced to ¼.
Assume clock frequency and all other factors are kept the same. Talk about the change in the total chip
power dissipation and chip temperature.

8. Wire Delay

- Wire RC delay is defined as $t_w = RC$, where R and C are resistance and capacitance of the wire. Consider structure as shown in Figure 1. Assume length of the wire is $L = 100 \mu m$ and W is the minimum wire size for each technology generation. Plot t_w/t as a function of year.
- L^* is defined as the length of the wire at which t_w is equal to t = CV/I for that technology generation. Plot L^* vs. year. Assume repeater insertion and recalculate L^* and plot it on the previous curve. (use data in ITRS to extract R_0 and C_0 for the repeater) (*Hand in the repeater part later!*)

(Extra credit) 9. Read "Executive Summary of the ITRS 2013 and list all difficult challenges related to "interconnect." Specifically, highlight those related to the "modeling."

(Extra credit) 10. Think of a method to plot as much important information as possible on a single plot (one possible idea could be: plotting all important variables vs. year, normalized to their value in the starting generation). Make such a plot based on the variables that you think contain the most important date for each technology generation.

(Extra credit) 11. Find a distributed circuit model which result in the following PDE. (you are not allowed to use dependent source but you may consider position-dependent elements!)

$$\frac{\partial^2 V}{\partial x^2} + \alpha \frac{\partial V}{\partial x} = \beta \frac{\partial V}{\partial t}$$