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Compact Distributed RLC Interconnect
Models—Part I: Single Line Transient, Time Delay,

and Overshoot Expressions
Jeffrey A. Davis and James D. Meindl, Life Fellow, IEEE

Abstract—Novel compact expressions that describe the transient
response of a high-speed distributed resistance, inductance, and ca-
pacitance( ) interconnect are rigorously derived with on-chip
global interconnect boundary conditions. Simplified expressions
enable physical insight and accurate estimation of transient re-
sponse, time delay, and overshoot for high-speed global intercon-
nects with the inclusion of inductance.

Index Terms—Bessel functions, inductance, interconnections,
time domain analysis, transmission line theory.

I. INTRODUCTION

I NTERCONNECT models must incorporate distributed self
and mutual inductance to accurately estimate time delay and

crosstalk in a multilevel network for multi-GHz gigascale inte-
gration (GSI) [1]. Sakurai has rigorously derived compact ex-
pressions for the transient response of a distributed resistance
capacitance interconnect [2]. This work significantly ex-
tends his expressions to include self and mutual inductance in
models of high-speed GSI interconnects. Novel compact expres-
sions for transient response describe the time delay and over-
shoot of a distributed resistance, inductance, and capacitance

transmission line model of a high-speed, on-chip inter-
connect. In a companion paper, these results are extended to de-
scribe the worst-case time delay and crosstalk of two and three
coupled lines in a multilevel wiring network [3].

II. TRANSIENT VOLTAGE OF DISTRIBUTED RLC
INTERCONNECTS

Sakurai solved a partial differential equation (PDE) that de-
scribes a single distributed rc interconnect [2]. In this section,
the transient response of a single distributedinterconnect is
rigorously derived. From this solution, the transient responses
of two and three coupled interconnect are determined in a com-
panion paper [3].

A. Semi-Infinite Line

The transient response of a single semi-infinite distributed
interconnect with arbitrary source impedance and driven by a
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step input voltage as seen in Fig. 1(a) is first determined. The
PDE that describes a single distributed line is given by

(1)

where
distributed resistance per unit length;
distributed inductance per unit length;
distributed capacitance per unit length.

Using a single-sided Laplace transform of , the differen-
tial equation in (1) becomes an ordinary differential equation. It
is assumed that the initial values of the voltage and the current
on the transmission line are zero which gives

(2)

The general solution to this expression in the Laplace domain is

(3)

The coefficient must be zero so that the solution of (3) is
well-behaved and finite at infinity. Likewise, the coefficient
is determined from the boundary condition at where

is equal to the input voltage, , minus
the voltage across the source impedance. After applying these
boundary conditions, the voltage at a positionalong the line
is given by

(4)

where is defined as thelossycharacteristic impedance and
is given by

(5)

where thelosslesscharacteristic impedance is .
To determine the series solution of (4) in the time domain, the

following inverse Laplace transformation is used [4]:

(6)
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Fig. 1. (a) Semi-infinite and (b) finite distributedrlc line

where is a unit step and is a th-order modified
Bessel function.

Two transformations used by Heaviside in [5] are used to ob-
tain the time domain series of (4). The first transformation is
given by letting . Performing this transformation on

in produces a new function, , that is re-
lated to in the time domain according to the following
relation:

(7)

Therefore, the time domain solution to is related to
by

(8)

Making this transformation in (4) where and simpli-
fying gives

(9)

Now a second variable transformation is performed which is
given by

(10)

Making this temporary substitution only in the bracketed quan-
tity in (9) and simplifying gives

(11)

Factoring the term in the curly brackets in (11) gives

(12)

where

(13)

Using a partial fraction expansion on the term in the curly
brackets in (12) gives

(14)

Making the substitution of (13) into (14) and recognizing the
reflection coefficient gives

(15)

To determine a series representation of (15), the following
series definition is used [4]:

(16)

Using (16) and the definition of the reflection coefficient,,
(15) becomes

(17)

Solving for in (10) gives

(18)

and substituting (18) into (17) leads to

(19)
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Using the transformation presented in (6) on (19) gives the ex-
pression for in the time domain seen in (20), shown
on the bottom of the page. Because of the transformation

, (8) is utilized to determine the final expression for the
voltage at a position along a semi-infinite line, as seen in (21),
shown at the bottom of the page.

To gain further insight, the expression in (21) is rewritten
to highlight the two most important parameters influencing the
characteristics of the infinite line. This is accomplished by re-
placing the time variable,, with a new time variable, , that
is normalized to the time of flight (i.e., ). Making
this substitution in (21) gives (22), shown on the bottom of the

page, where . Therefore, the only variables that af-
fect infinite line transients are the reflection coefficient,

, and the ratio of .
Letting the resistance in (21) go to zero gives (23), shown

at the bottom of the page. Because the zero order modified
Bessel function has a value of unity and all higher order mod-
ified Bessel functions have a value of zero, (23) becomes the
travelling wave solution for the lossless line given by

(24)

(20)

(21)

(22)

(23)
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Recognizing that in (21), gives the expression for the
voltage wave front travelling down a lossy infinite line

(25)

The expression in (25) is derived with traditional transmission
line theory, but the new compact expressions are used to obtain
a more accurate representation of the transient response close to
the wave front on a distributed line.

To derive this new near wave front expression, the expansion
of a zeroth order Bessel function is used and given by

(26)

In addition, if the argument of the Bessel function ismuch less
than the order of the Bessel function then the modified Bessel
function can be approximated by

(27)

Substituting (26) and (27) into (22) and simplifying gives

(28)

The summation over in (28) is the difference of two expo-
nential functions. To derive its exact form, a new function, ,
is defined that is the value of the summation from to in-
finity, which is

(29)

Therefore, the value of the summation from to infinity
is determined by the subtraction from (29) of the term,
which gives

(30)

where is defined in (29) and .

Fig. 2. Approximate transient expressions for a semi-infinite line compared to
the exact compactrlc model, a distributedrc model, and a traditional low-loss
solution (Z = 266:4 
, r = 37:86 
/cm,x = 3:6 cm,R = 133:2 
)

Assuming that the zero order Bessel function is approxi-
mated by one, then a new simplified expression for the transient
voltage near the wave front is given by

(31)

The first term of the expression in (31) is a fast rising attenu-
ated travelling wave solution. The second term is a slow rising
waveform that is more indicative of traditional distributedso-
lutions. This near wave front approximation is compared to the
exact compact solution in Fig. 2.

To capture transient behavior further from the edge of the
wave front, zero order and first order modified Bessel function
approximations are used. Using (22) and (29) these zero and first
order modified Bessel function approximations, respectively,
are derived as

(32)

and (33), shown at the bottom of the next page.
These additional approximations are compared to the exact

compact model, a distributed model, and a traditional low
loss model that is derived in (25). Physically, the addition of
each modified Bessel function in summation in (22) provides a
greater accuracy further from the wave front. In addition, Fig. 2
illustrates that the distributed model significantly overesti-
mates the 50% time delay for this example.

B. Finite Line

The most appropriate boundary conditions for a global inter-
connect for GSI are given by a finite line with an arbitrary source
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Fig. 3. Reflection diagram for finite line.

impedance and an open circuit termination at the receiving end
of the line as seen in Fig. 1(b) [6]. Using the reflection diagram
in Fig. 3, the expression for the voltageat the end of a line of
finite length, , in the Laplace domain is determined to be

(34)

where
defined in (5);
reflection number;
maximum reflection number as seen in Fig. 3.

Following (9), making the transformation in (34)
where leads to

(35)

Using the second substitution of and sim-

plifying gives

(36)

Simplifying (36) in terms of source reflection coefficient,,
gives

(37)

To evaluate the series solution, the following series definition is
used [4]:

where (38)

where
assumed to be a positive integer;
index associated with the expansion of the numerator;
index associated with the expansion of the denomi-
nator of (38).

Substituting (38) into (37) gives

(39)

Substituting the expression for from (17) into (39)

(33)
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and simplifying leads to

(40)

Making the substitution from (18) and using the transformation
in (6), leads to the following expression in the time domain, as
seen in (41), shown at the bottom of the page. Using (8) gives
the final expression for the voltage at the end of a finite dis-
tributed interconnect, as seen in (42), shown at the bottom
of the page, where, which is defined as the maximum reflec-
tion number for a given time, is written as a function of time
according to

(43)

where the notation is defined as the decimal truncation of
(i.e., ).

This new expression in (42) is compared to HSPICE simu-
lation of an interconnect using 1, 10, 50, and 500 lumped RLC
elements in Fig. 4(a)–(d). This interconnect has a length of
3.6 cm, a 2.1 m by 2.1 m cross-sectional metal dimension
(giving a resistance per unit length to be approximately 37.9

/cm), a driver resistance of 133.2, and a lossless char-
acteristic impedance of 266.5. The interconnect metal is
composed of copper with a surrounding lowdielectric. The
inductance per unit length was derived using a quasi-TEM
mode approximation. Fig. 4(a)–(d) illustrates that as the
number of lumped elements is increased in the HSPICE sim-
ulation, HSPICE results converge to the compact distributed

solutions. Unlike HSPICE, the compact expressions can
be used with various searching algorithms to calculate directly
without intermediate steps interconnect characteristics such as
time delay and overshoot.

In addition, special cases can be explored of (42) to provide
further insight into the distributed interconnect operation.
For example, consider (42) when the source resistance is equal
to thelosslesscharacteristic impedance of the line,. The re-
flection coefficient, , in this case becomes zero. The only sum-
mation terms that survive in (42) are when is satisfied.

(41)

(42)
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Fig. 4. Compact expression compared to HSPICE Simulation of (a) 1, (b) 10, (c) 50, and (d) 500 lumpedrlc elements (Z = 266:5 
, r = 37:87 
/cm,
` = 3:6 cm,R = 133:2 
)

This condition occurs when

(44)

Because and by definition, then (44) is satisfied
only when and . Making this substitution into
(42) gives the transient expression when the source resistance
is equal to the lossless characteristic impedance.

(45)

where . As mentioned previously, has the interpreta-
tion of being the reflection number where is
the first reflection and the summation terms associ-
ated with are the later reflections that begin
at (where ), respectively. Equation
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Fig. 5. Finite line first reflection approximation compared to complete
compact model (Z = 266:4 
, r = 37:8 
/cm,` = 3:6 cm,R = 133:2


)

(45) differs from traditional lossless transmission line theory in
which a matched source absorbs all power from the transmis-
sion line leaving only the first reflection. A distributed in-
terconnect, however, prevents this type of perfect matching be-
cause the voltage and current ratio are out of phase AND their
ratio changes with time. In lossless transmission line theory, the
ratio of the voltage and the current is always a constant equal
to the lossless characteristic impedance, which allows perfect
impedance matching.

Even though perfect matching is not possible, it can be as-
sumed that the first reflection provides significant information
about the transient characteristics. Using the near-wave-front
approximation from (31) gives the following approximate ex-
pression for the transient voltage at the end of a line with a
matched source impedance as

(46)

where . With arbitrary source impedance, this
simple first reflection approximation is given by

(47)

where is defined in (29). Both (46) and (47) are valid for
slightly greater than 1, and the first term has the interpretation

of being the fast rising “ ” portion and the second term is the
slow rising “ ” portion.

To approximate the transient response further away from the
edge of the wave front, the zero and first order modified Bessel
functions are needed. Using expression (42) and (33) and nor-
malizing the time variable,, to the time of flight (i.e.,

), the single reflection approximation is given by (48),
shown at the bottom of the page. This expression gives the de-
tailed transient response of an interconnect in a range up to three
times of flight of the signal. This is verified in Fig. 5 in which
(48) is compared to the exact compact expression for a finite
line. The first reflection approximation provides useful informa-
tion on time delay and peak overshoot as clearly demonstrated
in Fig. 5. The new approximations are also compared to a dis-
tributed model that significantly underestimates the 50% time
delay and significantly overestimates the 90% response time of
the interconnect. In addition, the distributedmodel does not
predict any overshoot on the line.

III. SIMPLIFIED EXPRESSION FORTIME DELAY AND

OVERSHOOT

The complete compact models provide great flexibility to cal-
culate a variety of parameters on a distributedline including
50% time delay and maximum overshoot; however, approxi-
mate expressions for time delay and maximum overshoot are
also desirable for the multilevel network designer.

A. Overshoot Expression

First, a closed-form expression for the peak overshoot is pro-
posed. Fig. 5 illustrates that the peak overshoot on a single line
occurs at , where is the time of flight of an elec-
tromagnetic signal traveling down the line. Generalizing this
assumption, the first reflection approximation is used to deter-
mine a closed-form expression for peak overshoot. Substituting

into (42) and taking the first three modified Bessel

(48)
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Fig. 6. Verification of simplified overshoot expression (Z = 266:5 
, r =
37:87 
/cm)

function in the expansion, which extends the accuracy for longer
lines, gives

(49)

The expression in (49) is valid as long as its result is greater
than one. If the result is less than one, then it can be assumed
that there is no overshoot; therefore, an expression for the peak
overshoot is approximately given by

(50)

where is defined in (49) and max is a func-
tion that returns the maximum value of its arguments. The re-
sults of this simplified expression are compared to the compact

expression for various values of , , and in Fig. 6.
Fig. 6 shows that this approximate expression very accurately
describes the peak overshoot on a distributedinterconnect.

B. Time Delay Expression

Time delay is defined as the time at which the voltage at the
end of an interconnect reaches 50% of its steady-state value.
Sakurai has rigorously derived an expression for the time delay
of a distributed line and it has the following form [2]:

(51)

Using a low loss model, Sakurai’s model is enhanced to in-
clude inductance. Setting (25) equal to , and solving for

Fig. 7. Comparison of closed-form time delay expression to exact results using
compactrlc model for vary interconnect lengths and driver impedance (Z =

266:5 
, r = 668 
/cm).

the resistance to lossless characteristic impedance ratio gives the
following condition for time of flight interconnect operation as

(52)

If the source resistance is greater than in (52), then the
voltage launched at on the transmission line is less than

. Therefore, the voltage at the end of the line with the
open circuit termination is less than at the time of flight
regardless of the interconnect resistance. This means that (52) is
valid only for . In addition, if the source impedance
is matched to the characteristic impedance, the interconnect re-
sistance must be

(53)

to have a time delay equal to the time of flight.
An improvement to Sakurai’s model is given by

REGION I: AND

or (54)

REGION II: OR

or

(55)

This closed-form expression for time delay is compared to the
exact compact expression in Fig. 7. The simplified expres-
sion provides less than 5% error when is less than 0.2 or

is greater than 2.3. To get more accurate results outside
this region, the compact distributed expressions are needed.
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IV. CONCLUSION

Compact expressions that describe the transient response
of a single distributed interconnect are rigorously derived.
Simple closed-form approximations are derived that estimate
the transient response of semi-infinite and finite distributed

interconnects. Finally, simple closed-form expressions for
overshoot and time delay are derived that include the effects
of inductance on a single line. The results in this paper are
used in the companion paper to determine the worst-case time
delay and crosstalk between three coupled lines in a multilevel
network.
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