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Compact Distributed RLC Interconnect
Models—Part I: Single Line Transient, Time Delay,
and Overshoot Expressions

Jeffrey A. Davis and James D. Meindlife Fellow, IEEE

Abstract—Novel compact expressions that describe the transient step input voltage as seen in Fig. 1(a) is first determined. The
response of a high-speed distributed resistance, inductance, and ca-PDE that describes a single distributéd line is given by
pacitance (rlc) interconnect are rigorously derived with on-chip
global interconnect boundary conditions. Simplified expressions 52 52 k)
enable physical insight and accurate estimation of transient re- Tz Viw, t) =le 5 Vo, t) +re; Viz, t) Q)
sponse, time delay, and overshoot for high-speed global intercon- dz It It

nects with the inclusion of inductance. where
Index Terms—Bessel functions, inductance, interconnections, distributed resistance per unit length;
time domain analysis, transmission line theory. l distributed inductance per unit length;
¢ distributed capacitance per unit length.
I. INTRODUCTION Using a single-sided Laplace transformiofz, ¢), the differen-

tial equation in (1) becomes an ordinary differential equation. It

I NTERCONNECT models must incorporate distributed self assumed that the initial values of the voltage and the current
and mutual inductance to accurately estimate time delay aflihe transmission line are zero which gives

crosstalk in a multilevel network for multi-GHz gigascale inte-

gration (GSI) [1]. Sakurai has rigorously derived compact ex- o2

pressions for the transient response of a distributed resistance o922
capacitanceérc) interconnect [2]. This work significantly ex- . . . I

tends his expressions to include self and mutual inductanceTiiﬂe general solution to this expression in the Laplace domain is
models ofhlgh—_speed GSlI interconnects. Noyel compact expres-V(x’ 5= Ao mVINSGHED) | gorvIer/s(H D). 3)
sions for transient response describe the time delay and over-

shoot of a distributed resistance, inductance, and capacitaﬁxﬁ% coefficient3 must be zero so that the solution of (3) is

(ric) transmission Iin_e model of a high-speed, on-chip inte{}\'/ell-behaved and finite at infinity. Likewise, the coefficieat
connect. In a companion paper, these results are extended toléj%r

etermined from the boundary conditionzat= 0 where
scribe the worst-case time delay and crosstalk of two and thrge . . :
coupled lines in a multilevel wiri);lg network [3] Pz = 0.5) is equal to the input voltagdu(s), minus

the voltage across the source impedance. After applying these
boundary conditions, the voltage at a positioalong the line

Viz, s) =V(z, s)les (3 + 77) . 2

Il. TRANSIENT VOLTAGE OF DISTRIBUTED RLC

is given by
INTERCONNECTS
Sakurai solved a partial differential equation (PDE) that de- v, ((z, s) = V; (3)72(3) = =Vie\/s(s+(r/1) (4)
scribes a single distributed rc interconnect [2]. In this section, Z(s) + Ry

the transient response of a _smgle d_|str|butbdnterconnect 'S wherez (s) is defined as thiossycharacteristic impedance and
rigorously derived. From this solution, the transient responsgsgiven by

of two and three coupled interconnect are determined in a com-
panion paper [3].

A. Semi-Infinite Line Z(s) = 5)

The transient response of a single semi-infinite distributed
interconnect with arbitrary source impedance and driven bywdere thdosslessharacteristic impedance i, = /(I/c¢).
To determine the series solution of (4) in the time domain, the
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Factoring the term in the curly brackets in (11) gives

, Zo e—x\/ﬁ\/sz—oz
(%, 8) =Vaa
(Zo + Rtr) 82 — 0'2

y {( (a+1)2 } (12)

a—ap)a—a)

L - where
iV(x t)= rczv(x t)+lc~a—2—V(x t)
axz 4 ot 4 6t2 ’ oy = Rtr + Zo . (13)
(a) Zo + Rtr
Side view Cross-sectional view  Using a partial fraction expansion on the term in the curly
R, 1 brackets in (12) gives
X/ I il
G e T Mz A Re) Vo2
s (ay +1)2 B (a_+1)2
Fig. 1. (a) Semi-infinite and (b) finite distributedc line (ar —a_)a—ay) (ap—a)a—a_)]’
(14)
wherew(t) is a unit step and, [—] is a vth-order modified ) o _ .
Bessel function. Making the substitution of (13) into (14) and recognizing the
Two transformations used by Heaviside in [5] are used to of:flection coefficient’ = (R, — Z,)/(Rw: + Z,) gives
tain the time domain series of (4). The first transformation is 7 - aVie/sT—o7
given by lettings — s — o. Performing this transformation ony? (4, s) =V, o
s5in V(z, s) produces a new functio}’(z, s — o), that is re- (Zo+ Ri:)  Vs?—0?
lated toV (z, s) in the time domain according to the following 14t 4 T+1) (15)
relation: 1-T)\(a—=1) (a-01),)])"
Vi(z, t) = Ve, s—o) = V'(z, s). (7) To determine a series representation of (15), the following
series definition is used [4]:
Therefore, the time domain solution & (x, s) is related to f
V(z, t)b 1 S
(x, t) by o= @ (16)
Vi, t) = V' (z, t). (8) k=0

. . L o Using (16) and the definition of the reflection coefficieht,
Making this transformation in (4) wheee= r/(2{)and simpli- (15) becomes

fying gives
Vvi:nf(xa 3)
V/ ( ) B V e_x\/E /s2 —g2 s+o Zo _ Vdd Zo e—a}\/ﬁ\/s2_az‘
inf\ %> 8) = Vad s2 — g2 s—o s+o ’ (Zo + Ri) $?2 — o2
Zo S—O’+Rtr 1 k=00 1 k
1+ —— —) @-(1+D)r*hHs. a7
©) x{ P 2 (3) @maen >} a7)
Now a second variable transformation is performed which &yying forq in (10) gives
given by )
=— 2 o2 18
s:%(a—i—a_l). (10) “ a($+ s 0)’ (18)

and substituting (18) into (17) leads to
Making this temporary substitution only in the bracketed quan- 9(18) (17)

tity in (9) and simplifying gives 7 Vi7" =a?
Vi/nf(xv 3) = Vaa 2
Z e—m\/ﬁ\/ 52 —og2 (Zo + Rtr) 82 — 0'2
Vig(z, s) =V, - k=
(@ 5) a (Zo + Ryr) R {1 + Z
(@41 TR v
x a . (11) .
CL2 _9 Rtr a+ Rtr - Zo X(4 — (1 =+ F) I ) . (19)
(Zo + Rtr) Zo + Rtr
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Using the transformation presented in (6) on (19) gives the gpage, whereR = rz. Therefore, the only variables that af-

pression forV; .(z, s) in the time domain seen in (20), showrfect infinite line transients are the reflection coefficielit,=

on the bottom of the page. Because of the transformatien ((R./Z, — 1)/(R../Z, + 1)), and the ratio of?/Z,.

s — o, (8) is utilized to determine the final expression for the Letting the resistance in (21) go to zero gives (23), shown

voltage at a positior along a semi-infinite line, as seenin (21)at the bottom of the page. Because the zero order modified

shown at the bottom of the page. Bessel function has a value of unity and all higher order mod-
To gain further insight, the expression in (21) is rewritteified Bessel functions have a value of zero, (23) becomes the

to highlight the two most important parameters influencing thteavelling wave solution for the lossless line given by

characteristics of the infinite line. This is accomplished by re-

placing the time variable, with a new time variablet’, that

is normalized to the time of flight (i.et, = #z+/Ic). Making _ Z,
this substitution in (21) gives (22), shown on the bottom of the Vinr(2, 1) = Vag (Zo + Rex) ° (t B xﬂ) G
Z,
v o o
inf(x’ t) _Vdd (Zo + Rtr)
2
I <a 22— (2vic) )
X koo (*/2) uo (t = 2vic) .
TR foovic I | oy /2 - (a:\/ﬁ)2 (4-(Q+1)T)
1-T = \t+avlc *
(20)
Z
‘/in H=V _ Ho  —(r/2D)t
¢(z, 1) dd(Zo T Rtr)e
2
Iy <0 t2 — (x\/ﬁ) )
X koo (#/2) uo (t = 2ic).
_i_L ﬂ T oa 12 — (x\/E)Q (4_ (1 +F)2Fk—1)
1-T —= \t+avic UV
(21)
1-T R
e <2Z G 1)
Vint (2, t') = Vage™ /270" P R= sy R/ R 2k—1 ot =)
- . N2 _ _ ¢ —
52 <t,+1 Ik<220 @) 1)(4 (14T)2r*1)
(22)
Z 1o(0) (k/2)
= k/2
Vinf(a: t) = Vddioeo 1 pimicng t— l’\/ﬁ . U (t — x\/ﬁ)
’ Zo+ Ri: +— _— I.(0)(4 — (1 + )27k L
T ) | o 2 (o) O e

(23)
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Recognizing that = z+v/Ic in (21), gives the expression for the _L;oP664 2, 157,86 alem, x=8.8om, R, 13320
voltage wave front travelling down a lossy infinite line
7 ;g 06 |
V f(a: t) = Vdd—o 6_(7’3}/2&’). (25) cE;
" ’ (Zo + Rtr) % 0.5
=3 ,/ Approximation in (31)
The expression in (25) is derived with traditional transmissic g 0al e |
line theory, but the new compact expressions are used to obt "3‘. y 4
amore accurate representation of the transientresponse closS | /| TZ Tasiomton- 1o attren " |
the wave front on a distributedc line. ) / ——- Distributed RG Model
. . . S / New Approximate Expressions (31),{32),and (33)
To derive this new near wave front expression, the expansi s o2t /
of a zeroth order Bessel function is used and given by 3 /
o l/
$2 :LA g 01 F ,I
L(z)=1+ + +-- (26) !
¢ 22(11) - 2%(2h 00 L . . . .
0.0 1.0 2.0 3.0 4.0 5.0 6.0

. . . . Time N« fized to the Ti f Flight, t/
In addition, if the argument of the Bessel functiomisich less tme Normalized 10 the Time of Flight, ¥

than the order of the Bessel function then the modified Besi?d. 2. Approximate transient expressions for a semi-infinite line compared to

function can be approximated by the exact compaat/c model, a distributedc model, and a traditional low-loss
solution Z, = 266.4 1, r = 37.86 Q2/lcm,2 = 3.6 cm, R;, = 133.2 (2)

1 rz\"™
fi(w) ~ k! (5) : k> @7) Assuming that the zero order Bessel function is approxi-
mated by one, then a new simplified expression for the transient

Vint(z, ') Vinela, ) _ %o e (re/220)t (1)
% ZO —(R/2Z)t ‘/dd Rtr +Zo
= Vaa e o 1 ’
(Zo + Rix) +5e (re/2Z)(£(#) — F(1))uo(t' — 1). (31)
2 4
< R /02— 1) < R /52 — 1 1) The first term of the expression in (31) is a fast rising attenu-
1+ 22, 22, I ated travelling wave solution. The second term is a slow rising
« 22(1) 24(2h waveform that is more indicative of traditional distributedso-
k=co 4 k lutions. This near wave front approximation is compared to the
Z o < ) (' —1)*(4—(1+D)20* 1) exact compact solution in Fig. 2.
k=1 To capture transient behavior further from the edge of the
X ug(t — 1) (28) wave front, zero order and first order modified Bessel function

approximations are used. Using (22) and (29) these zero and first

The summation ovek in (28) is the difference of two expo- g;geéew\?:dm;s Bessel function approximations, respectively,
nential functions. To derive its exact form, a new functifft,),

is defined that is the value of the summation frére= Oto in-  Vige(z, ¢') Z, ~a220t (T8
finity, which is Ve | Ru+2,° \az, V'~
1 /
k=oco k —(rx/2Z,)t / /
- +-c ) — f(1)| u,(t' —1
=55 5 (32 -ty O~ et =)
k=0 o

(32)

= 4o(r®/4Z:)(H' —1) _ w e(re/4Z:)T('~1) ~(29) and (33), shown at the bottom of the next page.
r These additional approximations are compared to the exact
Therefore, the value of the summation frdm= 1 to infinity ~COmpact model, a distributect model, and a traditional low
is determined by the subtraction from (29) of the= 0 term, 0SS model that is derived in (25). Physically, the addition of
which gives each modified Bessel function in summation in (22) provides a
greater accuracy further from the wave front. In addition, Fig. 2

b—oo Ok illustrates that the distributed: model significantly overesti-
% <27; ) (' — 14— (1+ )21 mates the 50% time delay for this example.
k=1 . o .. .
— f(t/) _ f(].) (30) B. Finite Line

The most appropriate boundary conditions for a global inter-
wheref(t) is defined in (29) ang’(1) = 4 — ((1 +T')?/T"). connect for GSl are given by a finite line with an arbitrary source



2072 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 11, NOVEMBER 2000

= x=/ plifying gives
" =0
V(x=1L,5)=2V(x=1,s) Vim(z =4, s)
q
g
=2Vl s) +2 Z it ((271 +1)¢, §(a + a*1)>
=t
V(x=10,8)=2V,(x=1s) Ry, _Zoa—i-l "
2V =305) || (36)
Rtr + Zo 1
o _
Vix=1L5)=2V(x="1.s) Simplifying (36) in terms of source reflection coefficiert,
+2I me(x = 3(,s) gives
2T, (x =5¢,5) )
Vi(z =1, 5)
Fig. 3. Reflection diagram for finite line. . 1 1 "
n I
=2V (4, 5) +2 ; V2 ((2n + 1)¢, s)T 1 a

impedance and an open circuit termination at the receiving end
of the line as seen in Fig. 1(b) [6]. Using the reflection diagram 37)
in Fig. 3, the expression for the voltagéthe end of a line of

finite length £, in the Laplace domain is determined to be To evaluate the series solution, the following series definition is

used [4]:
Vfin(l’ = g, 8)
q n _ n n oo _ Y
oy _ Ry — Z(s) <1 w) _ =14+ i
= Waurll ) + 2; Vine (2.4 1)F ) <Rtr ¥ Z(s)) -y ; Z:O win =y Uy
34
(34) where(n > 0) (38)
where where

Z(s) defined in (5); n  assumed to be a positive integer;

. refleption numbe_r; P ( index associated with the expansion of the numerator;
g~ Mmaximum reflection number as seen in Fig. 3. j  index associated with the expansion of the denomi-
Following (9), making the transformation— s — o in (34) nator of (38),
whereo = r/(21) leads to Substituting (38) into (37) gives
1 !
V =/
Vim(z =€, s) =2V(¢, s) +2 Z 7 ((2n+ 1)L, 5) (T =4, 5)
n=1
Re — 7, s+o :2Viilf(£,s)+2zzzm
$—a n=1 i=0 j=0
* s+o | (35) "
i n—itq [ 1
Rtr + Zo s—a X (—1) 111f((2” + ]_)[’ 3)]__‘ +J <E> . (39)

Using the second substitution of= (o /2)(a + a~') and sim- Substituting the expression fdr/ .(z, s) from (17) into (39)

Vvinf(xa t/)
Vaa

Z 4 T 1 7 t/ - 1 05 rT
0 o220 [ 2 1) 4 D re/220 4—(1+I2)I ]
= Rtr+Zoe <2ZO +26 t+1 ( ( + )) 1 27

% =2 /2200 (Lt — 1) /(1) + F(¥) — f(1))
b (33)
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and simplifying leads to where the notatiok) is defined as the decimal truncation:of
(i.e., 2.7y = 2).
Vim(z =1, 5) This new expression in (42) is compared to HSPICE simu-
(n—1 +J lation of an interconnect using 1, 10, 50, and 500 lumped RLC
=2V (¥, 3)+2Vdd ZZZ i elements in Fig. 4(a)—(d). This interconnect has a length of
1. 7’L — L . . .
n=1i=0 j=0 3.6 cm, a 2.1um by 2.1 m cross-sectional metal dimension
e (2n+1)é\/ﬁx/52—02 (giving a resistance per unit length to be approximately 37.9
Fn 45 . .
x (=1)° N {l/cm), a driver resistance of 1332, and a lossless char-

4+, e ftit acteristic impedance of 266.8. The interconnect metal is
1 K} o0 1 +i+y . . . .
% {(_) Z < ) (4_(1+F)2Fk1)} ) _composed of copper with a surround_mg I(m/\q|electr|c. The
a T o \¢ inductance per unit length was derived using a quasi-TEM
(40) mode approximation. Fig. 4(a)—(d) illustrates that as the
number of lumped elements is increased in the HSPICE sim-
Making the substitution from (18) and using the transformatig#ation, HSPICE results converge to the compact distributed
in (6), leads to the following expression in the time domain, 4¢ solutions. Unlike HSPICE, the compact expressions can
seen in (41), shown at the bottom of the page. Using (8) g,\,@g used with various searching algorithms to calculate directly
the final expression for the voltage at the end of a finite digithout intermediate steps interconnect characteristics such as
tributed /¢ interconnect, as seen in (42), shown at the bottoine delay and overshoot.
of the page, where, which is defined as the maximum reflec- In addition, special cases can be explored of (42) to provide
tion number for a given time, is written as a function of timéurther insight into the distributedic interconnect operation.
according to For example, consider (42) when the source resistance is equal
to thelosslescharacteristic impedance of the ling,. The re-
. flection coefficient[’, in this case becomes zero. The only sum-
1= <0") <x\/ﬁ * 1'0>> - 10 (43)  mation terms that survive in (42) are whéif = 1is satisfied.

Z, n(n — 14 j)! it
= 2Vi(x =1, t>+2vdd—(Z e Zzziim(n_i)! (—1)iTn—i+d

(i+3)/2)
t— (2n+ 1)0Vlic D
<m> Iy <O’\/t2 — ((271 + 1)&/%) )
: 1R e n g i) -
fioT Z t+ (2Z + 1)&/%) Lt <f’\/t2 - ((271 + 1)€x/ﬁ) ) (4 — (14 T)20k 1)
xu, (t— (20 + 1)NE )
me(a: = g, t)
= Wint(x =€, ) + 2Vyg———— 7+ Rt o= (/20 z:l z; ZO HLC —n1_+LJ _pyipriti
n=1y11 J
(i+4)/2)
(E—iﬂ) b o~ e
(i+i+k)/2)
t— 2n+1)£\/_ At (o 7, -

X U (t — (2n + 1)£\/_c) (42)
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Fig. 4. Compact expression compared to HSPICE Simulation of (a) 1, (b) 10, (c) 50, and (d) 500 limpésments £, = 266.5 Q, r = 37.87 Q/cm,

¢ =3.6cm, Ry, = 133.2Q)

This condition occurs when

n—i+j=0.

Becausen > i andj > 0 by definition, then (44) is satisfied
only wheni = n andj; = 0. Making this substitution into

(44)

x I, <a\/t2 —(n+ 1)£\/E)2>

n+k)/2

t—(2n+1)¢Vlce ()

_l’_ -
= \t+(@2n+1DtVie

(42) gives the transient expression when the source resistance Ik 0\/t2 B ((2n " 1)(\/%)2 (4 - Ok—l)
is equal to the lossless characteristic impedance.
V(o = £, 1) X u,(t — (2n 4+ 1)4V1c) (45)

q

= 2Wint(z = £, t) + Vage™ /20" Z(_l)n

n=1

t—@n+evic) "
t+(2n + 1)6Vle

where0® = 1. As mentioned previously; has the interpreta-
tion of being the reflection number whe2&:,;(x = ¢, ¢) is
the first reflection(n = 0) and the summation terms associ-
ated withn = 1, 2, 3, - . are the later reflections that begin
at3ty, 5ty Tty, --- (wherety = £/1¢), respectively. Equation
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Z,-266.4 Q r=37.8 Q/cm L=3.6cm R, =133.20Q

wheret’ = t/(¢+/Ic). With arbitrary source impedance, this

:i [ ‘ ' simple first reflection approximation is given by
N 13 F

%: :f Vii(z, t') _ 27, o rm/ 22y (41 _ 1y

S: Vdd Rtr + Zo

£l e (F(8) — F)uo(f — 1) (47)

; 08 ]

3 o7 / 1 wheref(¢') is defined in (29). Both (46) and (47) are valid for

2 0.6 // — Eistribg;ed_go z\gogfé ol ) t’ slightly greater than 1, and the first term has the interpretation

3 zi o e et bestioted PLe Expressions ]  of being the fast risingZ:" portion and the second term is the

g 0'3 F ] slow rising “7jc” portion. .

S 0'2 ] ] To approximate the transient response further away from the
ot b/ ]  edge of the wave front, the zero and first order modified Bessel
0.0 ok . , . . functions are needed. Using expression (42) and (33) and nor-

0.0 10 20 30 4.0 50 60 malizing the time variablet, to the time of flight (i.e..t =

Time Normalized to Time of Flight, t/t,

t'V1cf), the single reflection approximation is given by (48),
Fig. 5. Finite line first reflection approximation compared to completshOwn at the bottom of the page. This expression gives the de-
compact model%, = 266.4 §2, r = 37.8 Qfem,£ = 3.6 cm, R;, = 133.2  tailed transient response of an interconnect in arange up to three
) times of flight of the signal. This is verified in Fig. 5 in which
(48) is compared to the exact compact expression for a finite
(45) differs from traditional lossless transmission line theory iline. The first reflection approximation provides useful informa-
which a matched source absorbs all power from the transmii®n on time delay and peak overshoot as clearly demonstrated
sion line leaving only the first reflection. A distributedc in-  in Fig. 5. The new approximations are also compared to a dis-
terconnect, however, prevents this type of perfect matching kebutedrc model that significantly underestimates the 50% time
cause the voltage and current ratio are out of phase AND thd#lay and significantly overestimates the 90% response time of
ratio changes with time. In lossless transmission line theory, ttie interconnect. In addition, the distributegmodel does not
ratio of the voltage and the current is always a constant eq@agdict any overshoot on the line.
to the lossless characteristic impedance, which allows perfect

impedance matching. ll. SIMPLIFIED EXPRESSION FORTIME DELAY AND
Even though perfect matching is not possible, it can be as- OVERSHOOT

sumed that the first reflection provides significant information . .

about the transient characteristics. Using the near—wave-fronir he complete cfompact models pr(;;_wd_(le)grgj_t ﬂe?('b'll'g.to cal-
approximation from (31) gives the following approximate ex(_:u;te_a va(rjle;[yo p?jramet_ers ona |strr]| u»t. h|ne inciuding - -
pression for the transient voltage at the end of a line with 2% time de ay and maximum oversnoot; however, approxI-
matched source impedance as mate expressions for time delay and maximum overshoot are

also desirable for the multilevel network designer.

w A. Overshoot Expression
dd
= RZ 1 1) First, a closed-form expression for the peak overshoot is pro-
B K y posed. Fig. 5 illustrates that the peak overshoot on a single line
+ <8e—(”é/220) sinh [7—@’ _ 1)} occurs att = 3t;, wheret; is the time of flight of an elec-
2Z, tromagnetic signal traveling down the line. Generalizing this
_6_(7%/220)#&@/ _ 1)> Uuo(t — 1) assumption, the first reflection approximation is used to deter-
o ’ mine a closed-form expression for peak overshoot. Substituting
(46) t = 3¢V/lIcinto (42) and taking the first three modified Bessel
me(a: =/, t)
Z,

’ g 1 ’ t/ -1 0.5 rT
—(rz/22. 007 (T gz ) oS pl—rn /2200t 4— (1420, [ —=/#2 =1
=2V Rtr‘i‘Zoe ’ <2Zo +26 t+1 (“-(+Dh 27,

e (= 1) (1) + () (1)
X (uo(t' = 1) = uo(t' = 3)) + Vaauo(t' — 3) (48)
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Fig. 6. \Verification of simplified overshoot expressiafi,( = 266.5 2, r = . . . . .
37.87 Q/cm) Fig. 7. Comparison of closed-form time delay expression to exact results using

compactrlc model for vary interconnect lengths and driver impedait.e £
266.5 2, r = 668 {}/cm).

function in the expansion, which extends the accuracy for longer
lines, gives the resistance to lossless characteristic impedance ratio gives the
following condition for time of flight interconnect operation as

V(¢ t=3ty)
Vaaa R 4z,
— <2In|—— 52
_ 2LC—(3W2ZO) Zo ~ . [Rtr + ZJ (52)
(Zo + Rtr)

M 1\ &/ M If the source resistance is greater ttfio in (52), then the
x {Io <2Z \/§> + (T +3) <§> I <2Z \/§> voltage launched at = 0 on the transmission line is less than
° ° 0.25Vy,. Therefore, the voltage at the end of the line with the
(' +3) +4) < rt ) } open circuit termination is less th@msV,, at the time of flight
F—7>D V8 . (49) . . . .
2 27, regardless of the interconnect resistance. This means that (52) is
valid only for R, < 3Z,. In addition, if the source impedance
The expression in (49) is valid as long as its result is greatgrmatched to the characteristic impedance, the interconnect re-
than one. If the result is less than one, then it can be assunsesiance must be
that there is no overshoot; therefore, an expression for the peak

overshoot is approximately given by R<2In2Z, =1.392, (53)
Voversnoot — max <17 M) (50) to have atime delay equal to the time of flight.
Vad Vad An improvement to Sakurai's model is given by

) _ ) _ REGION I: (R/Z,) < In[4Z,/(Ri.. + Z,)] AND
whereV (£, t = 3ty)/Vyq is defined in (49) and max is a func- R, < 3Z,
tion that returns the maximum value of its arguments. The re-
sults of this simplified expression are compared to the compact .
rlc expression for various values &,, R.., andR in Fig. 6. 5o 1.0 orr = Nz (54)
Fig. 6 shows that this approximate expression very accurately
describes the peak overshoot on a distributednterconnect. REGION II: (R/Z,) > 2n[4Z,/(Ry + Z,)] OR

R, > 37,

B. Time Delay Expression

Time delay is defined as the time at which the voltage at the R, 4 _ o
end of an interconnect reaches 50% of its steady-state valge.” 0.693 Z, + 0'3772_0 orr = 0.693Rycl 4 0.377rcl”.
Sakurai has rigorously derived an expression for the time delay (55)

of a distributed-c line and it has the following form [2]:

This closed-form expression for time delay is compared to the
7 = 0.693Rycl + 0.377rct? (51)  exact compactic expression in Fig. 7. The simplified expres-
sion provides less than 5% error whip./Z, is less than 0.2 or
Using a low loss model, Sakurai’'s model is enhanced to ik¢/Z, is greater than 2.3. To get more accurate results outside
clude inductance. Setting (25) equalXéV,,, and solving for this region, the compact distributeé: expressions are needed.
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Compact expressions that describe the transient respo
of a single distributed-c interconnect are rigorously derived.
Simple closed-form approximations are derived that estime
the transient response of semi-infinite and finite distribute
rlc interconnects. Finally, simple closed-form expressions fi
overshoot and time delay are derived that include the effe
of inductance on a single line. The results in this paper
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