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Short Papers

Crosstalk in VLSI Interconnections

Ashok Vittal, Lauren Hui Chen, Malgorzata Marek-Sadowska,
Kai-Ping Wang, and Sherry Yang

Abstract—We address the problem of crosstalk computation and
reduction using circuit and layout techniques in this paper. We provide
easily computable expressions for crosstalk amplitude and pulse width in
resistive, capacitively coupled lines. The expressions hold for nets with
arbitrary number of pins and of arbitrary topology under any specified
input excitation. Experimental results show that the average error is
about 10% and the maximum error is less than 20%. The expressions
are used to motivate circuit techniques, such as transistor sizing, and
layout techniques, such as wire ordering and wire width optimization to
reduce crosstalk.

Index Terms—Coupled noise, signal integrity, timing optimization

I. INTRODUCTION

Coupling between signal lines can cause logic failures and timing
degradation in digital systems. Such problems become extremely
severe in emerging subquarter micron technologies where the neigh-
boring wire capacitance contributions are larger than the contributions
due to the effective ground planes (for electric fields) on adjacent
metal layers. Besides, high-speed circuits heavily utilize dynamic
circuits, which are particularly sensitive to noise at both their input
and output lines. The noise coupled onto the input of a dynamic node
should be within limits lest an incorrect value be latched leading to
repeatable, irrecoverable failures. Further, the outputs of these nodes
are not driven and should not be charged or discharged by a leakage
path through an adjacent line. With increasing system complexities
and the availability of several layers of metal, the number of inter-
actions between signals is large, necessitating automated techniques
for constructing layouts without crosstalk problems. Such techniques
are the focus of this paper. A preliminary version of this paper was
presented at the 1999 International Conference on VLSI Design [17].

There are several tools in existence which extract resis-
tance–capacitance (RC) networks from layouts. Simulating the large
networks that typically arise is time consuming and it is important
to be able to quickly verify that crosstalk on noise sensitive nodes
is below the noise margin, or at least identify a much smaller set
of nets for detailed crosstalk simulation. The derivation of simple
closed form expressions for crosstalk in arbitrary networks has been
an open problem for three decades, since [2]. Other relevant research
in this area includes the work in [6] and [12] which solves partial
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differential equations for a pair of lines to arrive at a crosstalk
expression. The work in [15] and [16] derives bounds for crosstalk
using a lumped model ignoring interconnect resistance, the work in
[18] points out that it is important to consider interconnect resistance
when computing noise and the research in [3] derives a simple,
elegant upper bound for crosstalk under ramp inputs. The peak
noise expression in [15] is extended by [13] and [5] to handle
resistive interconnects. The essential idea is to introduce equivalent
aggressor and victim driver resistances such that the simplicity of the
expressions could be maintained. A coupled T network model is used
in [13] to extend the expression in [15] to the case of two resistive,
capacitively coupled lines. The errors compared to circuit simulation
are reported to be less than 20% for the configurations they consider.
Similarly motivated work in [5] uses a single pole approximation to
derive equivalent resistances for the expression in [15]. Neither [13]
nor [5] is guaranteed to yield bounded error. Besides they assume
step inputs as in [15]—a clear shortcoming because in the limit of
large rise times (compared to circuit time constants), the peak noise
is inversely proportional to aggressor input rise time, as shown in
[3]. Our results may be viewed as generalizing the result in [15]
to handle arbitrary distributed RC networks, under arbitrary input
excitation with an arbitrary number of aggressors. Our expressions do
not obscure the physical meaning of the various contributions and are
simple enough to be used in several formulations, some of which are
explored in Section IV. The error of our noise amplitude expression
is small even with small rise times, as opposed to the expression
in [3] which yields infinite error when rise times are small. Thus,
while there have been crosstalk expressions proposed in the past,
they have been either for specific configurations or for specific input
signals, detracting from their utility in circuit and layout optimization
formulations aimed at reducing crosstalk. Our expressions address
these shortcomings.

We do not explicitly deal with coupling due to magnetic field in-
teractions in this paper. The magnitude of inductive coupling is small
in the presence of good ground return paths close to signal lines. Be-
sides, signals invariably need buffering due to rise time concerns long
before line lengths are large enough to warrant coupled transmission
line models for crosstalk analysis [9]. Extensions of our expressions
for use in underdamped resistance–inductance–capacitance (RLC)
networks are possible, but are not considered here. We, however, do
point out situations where our expressions hold for these cases too.

The paper is organized as follows. Section II derives a measure
for noise voltage and an expression for the noise integral for general
networks and applies it to several cases. Section III presents results
that validate the accuracy and fidelity of these expressions compared
to HSPICE simulations on networks obtained from an industrial
extraction flow. In Section IV we briefly discuss various circuit and
layout optimization problems which can use our new expressions.
Section V concludes with a recap of our major contributions.

II. NEW CROSSTALK EXPRESSIONS

In this section we begin by considering crosstalk in arbitrary
extracted networks. Using simple geometric arguments we motivate
peak crosstalk noise amplitude and pulse width expressions. We
propose their practical approximations to yield simple measures and
consider several special cases.

0278–0070/99$10.00 1999 IEEE



1818 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 12, DECEMBER 1999

Fig. 1. An arbitrary noise waveform.

Consider a general noise step responses-domain function given
by (1). We will generalize to the case of arbitrary input excitation in
a later section. There is assumed to be no directly coupled(s = 0)
path from input to output, so the zero ats = 0 cancels the step
input 1=s: Note that the impulse response is just the expression in
(1) multiplied by s

Vo(s) = K
1 + a1s+ a2s

2 + � � �+ ams
m

1 + b1s+ b2s2 + � � �+ bnsn
: (1)

The noise amplitude pulse width product for the frequency domain
function in (1) is

K =
1

0

vo dt: (2)

The effective noise pulse width is

b1 � a1 =

1

0

tvo dt

1

0

vo dt

: (3)

So we propose the “effective” peak noise expression

Vp =
K

b1 � a1
: (4)

This is equivalent to

Vp =

1

0

vo dt
2

1

0

tvo dt

: (5)

We motivate the use ofVp with a couple of geometric arguments.
A typical noise waveform with medianM and meanm is shown in
Fig. 1. The mean is

m =

1

0

tvo dt

1

0

vo dt

:

The median is given by the integral equation

M

0

vo dt = 0:5
1

0

vo dt:

Notice that the waveform in Fig. 1 is positively skewed, i.e., the
shaded area is larger than the area under the curve until the median.
In other words

Vmax =

1

0

tvo dt

1

0

vo dt

� 0:5
1

0

vo dt:

The expression on the left-hand side is the area under the rectangle
(the product of the mean time and the peak voltage) and the right-
hand side is the area under the curve from zero until the median (half

Fig. 2. An expression forVmax:

the total area). This implies

Vmax �
Vp
2
: (6)

Now consider the area of the triangle shown in Fig. 2. The area
under the triangle isVmax �m=2: Assuming a concave function, the
area under the triangle is less than the area under the curve between
the origin and the meanm; i.e.,

Vmax

2
m �

m

0

vo dt:

As M is the median of the function, the right-hand side of the above
inequality can be rewritten as

m

0

vo dt =
M

0

vo dt+
m

M

vo dt

=0:5
1

0

vo dt+
m

M

vo dt

:

Substituting form and Vp

Vmax

2
�

Vp
2

+

m

M

vo dt

m
:

Clearly,
m

M

vo dt � Vmax(m�M):

Substituting, we get

Vmax �
Vp

2
M

m
� 1

: (7)

Thus,Vmax lies betweenVp=2 andVp=(2a� 1) wherea is the ratio
of the median to the mean and lies between 0.5 and 1.0 We will see
that Vp is a good measure for any optimization formulation which
needs a closed form expressions for crosstalk.

In practice, the bounds in (6) and (7) are quite loose. For instance,
consider an arbitrary noise response dominated by two poles and
normalized such that the area under the curve is unity, i.e.,

v(t) =
e�t � e�zt

1�
1

z

:

The expression above has to be the form ofany two-pole response,
given that the values at zero and infinite time are zero and the area
under the noise curve is unity. It is possible to show that the peak
noise for this arbitrary two-pole expression isz1=(1�z) and our peak
noise expression isz=(z+1):As z varies from1+ to infinity (over the
set of all two-pole dominated responses), our expression is actually
an upper bound and the ratio of our expression to the true peak noise
varies frome=2 to 1.0, wheree is the base of the natural logarithm.
The range of the ratio of our expression to true peak noise is0.74 to
1.0 for any (not necessarily positively skewed) two-pole dominated
noise waveform.
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In general, the termb1 in (4) can be expressed as in [8]

b1 =
C 2C

CiRii: (8)

C is the set of capacitances,Ci is theith capacitance, andRii is the
resistance seen across capacitorCi when all other capacitances are
open. In other words,b1 is the sum of open circuit time constants.
The terma1 in a general network withn nodes takesO(n2) time
to compute. We observed experimentally, on the networks for which
we report results in later sections, thata1 is typically much smaller
than b1: We, therefore, approximate the crosstalk pulse width byb1

and introduce an approximate peak noise

V
A
p =

K

b1
: (9)

Let us define the Elmore delay [4] of a line, in the presence of
coupled parasitics to other lines, to be the first moment of the impulse
response, with all other lines to which the network couples to be tied
at ground.

We now make a couple of key observations.
Observation 1: The crosstalk pulse width in (9) for a pair of RC

lines is the sum of the Elmore delays of the two lines.
Note that b1 for a pair of coupled RC lines is just the sum

of the capacitance-driving point resistance products for all the ca-
pacitances in the network. The driving point resistance is defined
as the resistance seen across the nodes with all other capacitances
open. Consider the sum of the Elmore delays of these two lines, as
defined previously. The coupled capacitances appear in the Elmore
delay sum expression twice and the corresponding multipliers are
the upstream line resistances seen by these capacitances. The sum of
the upstream line resistances is precisely the driving point resistance
for the coupled capacitance. On the other hand, the capacitances to
ground on either line appear only once, with the multiplier being
the upstream resistance of the line, which is again the driving point
resistance. Thus b1 is precisely the sum of the Elmore delays of the
two coupled RC lines.

Equation (9), therefore, relates the peak noise to the delays and
will henceforth be referred to as thenoise-delay product expression.

Observation 2: The noise pulse width for an arbitrary victim net
can be computed in linear time.

The sum of ground capacitance-upstream resistance products for
a victim can be computed in linear time by a pair of tree traversals
[11]. We just need to add the loop resistance-coupling capacitances to
get b1: This is easily achieved by recording the upstream resistances
for each victim and aggressor node. From (8), we get the required
pulse width.

We now state and prove the noise integral theorem.
The Noise Integral Theorem:For a victim tree coupled ton ag-

gressors of arbitrary unit amplitude wave shape, the integral of the
noise pulse over time at some nodeo is

Ko =
1

0

vo dt =
R 2P (o)

XiRi: (10)

The sum is over the setP (o) of resistances in the unique path from
the node to the root,Xi is the downstream coupling capacitance at
the ith node along the path andRi is the upstream resistance along
this path.

Proof: Fig. 3 shows the elements connected to an arbitrary node
in the victim tree and Fig. 3(b) shows the entire network. The victim
driver is modeled by its equivalent driver resistance and each node has
a coupled capacitance to an arbitrary aggressor node and a capacitance
component to ground. The equation characterizing nodei in this

(a)

(b)

Fig. 3. An arbitrary node in a victim tree and an arbitrary victim tree.

Fig. 4. An analogous network.

network is

Ci

dvi

dt
+ (Gi +Gki +Gji)vi

= Gjivj +Gkivk +Givi�1 +Xi

dva;i

dt
:

Here,Ci, Gi, Gji, Gki, vi, andXi are defined in Fig. 3 andva;i
is the voltage across theith coupling capacitance. Integrating over all
time and substituting initial values (all zeros) and final values (one for
all aggressor nodes, zero for all victim nodes) for all voltages, we get

(Gi +Gki +Gji)
1

0

vi dt

= Gji

1

0

vj dt+Gi

1

0

vi�1 dt+Gki

1

0

vk dt+Xi:

The equations characterizing the integral quantities are exactly iso-
morphic to a resistive network with no capacitors,Xi as the current
sources and the same resistors in place, as shown in Fig. 4. The
equation characterizing theith node is

(Gi +Gki +Gji)vi = Gjivj +Gkivk +Givi�1 +Xi:

The integral quantities in the RC network in Fig. 3 are analogous to
the voltages in the resistive network in Fig. 4.

We are interested in the voltage at the output node in the analogous
network. Using the principle of superposition, we get the node voltage
to be equal to the sum of the current source—driving point resistance
products. Hence, the result.

Notice that the proof depended on the initial and final values of
the aggressor lines only and did not make any assumptions about the
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wave shape. Thus, the aggressor could have demonstrated overshoot,
as in an RLC network, and the result would still hold. Besides, if
the logic swing of the aggressor were smaller (as might occur if
families with different logic swings are integrated in a system-on-a-
chip design), the corresponding term in the noise integral expression
would be scaled down appropriately.

We now state and prove the Peak Noise Theorem.
The Peak Noise Theorem:For a victim RC tree coupled to an

arbitrary number of aggressors the peak noise measure at any node
o is given by

V A
p =

R 2P (o)

XiRi

C 2C

CiRii

: (11)

Xi is the sum of downstream coupling capacitances seen from a
node,P (o) is the union of the victim driver resistance and the set of
resistances in the unique path from the root to the nodeo, C is the
set of all capacitors, andRii is the resistance seen acrossCi with
all capacitors open.

Proof: From the noise integral theorem, we have

K =
R 2P (o)

XiRi:

From (8), we also have

b1 =
C 2C

CiRii:

The result follows by substituting from the above two expressions
into (9).

The above theorems mean that the product of noise and the delay
sum for a pair of RC lines depends only on the victim driver and
interconnect resistances and the coupled capacitance. Expression (10)
and (11) can be computed in linear time as we noted in Observation
2. Thus our expressions enable optimum time complexity crosstalk
verification of layouts as in [15] while considering interconnect
resistance and handling arbitrary trees.

A. Handling Arbitrary Input Signals

The expressions in the previous subsection assumed unit step
inputs. In this section we remove this assumption and handle the
case of arbitrary input excitation. We then show two corollaries for
the cases of ramp and saturating exponential inputs.

1) The Nonstep Input Theorem:Consider an arbitrary specified
unit amplitude aggressor input function of the form shown in (12).
This has to be the form since the initial value is zero and the final
value is unity (this follows from the well known initial and final
value theorems)

Vi(s) =
1

s

1 + �1s+ �2s
2 + � � �+ �ms

m

1 + �1s+ �2s2 + � � �+ �nsn
: (12)

The noise under this input, given a step response represented by
(1), is given by

Vp =
K

b1 � a1 + �1 � �1
: (13)

Proof: Recall, from Footnote 2, that the noise transfer function
has a zero ats = 0 and is of the formsVo(s), whereVo(s) is given
in (1). The result (13) follows by multiplying the aggressor input
function with the transfer function and making the appropriate iden-
tification of the coefficients ofs in the numerator and denominator
polynomials and substituting into (4).

The low-frequency zeroa1 may be neglected in (13), as before, if
deemed to be expensive to calculate.

Fig. 5. Noise coupling to far and near-end receivers.

2) The Ramp Input Corollary:Let the input signal be a saturated
ramp with rise timeTr, of the form

vi(t) =
t

Tr
u(t)�

t� Tr
Tr

u(t� Tr)

whereu(t) is the unit step function, so that the noise output function
becomes

Vn(s) = K

1 +

m

i=1

ais
i

1 +

n

i=1

bisi

1� e�sT

sTr
:

Making a Taylor series expansion for the exponential, so that the
noise transfer function reduces to the form in (1) and using our peak
noise expression, we get

Vp =
K

b1 +
Tr
2

� a1

: (14)

Notice that when the circuit time constants are negligible compared
to the input rise time, the peak noise expression reduces to twice
Devgan’s expression(K=Tr) in [3]. Thus, our expression is a gen-
eralization to the case when circuit time constants are not negligible
compared to input rise times.

3) The Saturating Exponential Input Corollary:Now consider a
saturating exponential input with time constant�

vi(t) = 1� e�(t=�):

The noise output function becomes

Vn(s) = K

1 +

m

i=1

ais
i

1 +

n

i=1

bisi

s
1

s
�

�

1 + s�
:

Clearly, our peak noise expression reduces to

Vp =
K

b1 + � � a1
: (15)

B. Special Cases

We will now consider two special cases and show that our
expressions reduce to those in [15], when interconnect resistance is
negligible. We also show that our expressions for these particular
configurations reduce to the expressions of [13] and [5]. Thus, our
expression is truly a generalization of these earlier works.

Fig. 5 shows two on-chip lines running parallel on the same metal
layer. We wish to compute expressions for the noise voltage on line 2
when line 1 switches. Line 2 is assumed to be quiet (not switching).
In particular, we are interested in the peak noise voltage and noise
integral at the receiver of line 2.
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(a)

(b)

Fig. 6. Equivalent circuits for noise computation.

The equivalent circuits we use are shown in Fig. 6. We have used
lumped � models to model the interconnect. However, extensions
of the expressions to distributed RC models are straightforward.
X denotes half the coupling capacitance and is proportional to the
overlap length.C1 and C2 are half the line capacitances andC3

andC4 are sums of respective half line capacitances and receiver
capacitances.R1 is the aggressor driver resistance,R2 is the victim
output resistance, andR is the line resistance. The victim is in the
linear region so a linear model is adequate. The research in [9]
shows that a linear model for aggressor driver resistance also models
noise surprisingly well, even when transmission line analysis becomes
necessary.

Solving the nodal equations for the circuit in Fig. 5(a) to obtain the
functionV4 and making the appropriate identification of coefficients,
we get

b1 =R1(C1 + C3 + 2X) +R2(C2 + C4 + 2X)

+R(C3 + C4 + 2X) (16)

K =(2R2 +R)X (17)

a1 = R2

R

2
(C2 + C3 + 2X): (18)

Our peak noise measure becomes the equation shown at the bottom
of the page.

When a1 is neglected in the above expression, it is exactly the
expression in [13] and the denominator is identical to that in [5],
while the numerator uses an equivalent aggressor driver resistance.
We show experimental results in Section III that suggest that even for
this special case for which [5] was proposed, our expression yields
significantly smaller error. When the interconnect resistance is zero
our peak noise measure reduces to

V =
2R2X

R1(C1 + C3 + 2X) +R2(C2 + C4 + 2X)
: (19)

This is exactly the bound in [15]. Thus, the new model shows correct
asymptotic behavior when interconnect resistance is small.

For the near-end receiver shown in Fig. 5(b), with the equivalent
circuit shown in Fig. 5(b), the expressions forK andb1 are identical,

Fig. 7. Model comparisons.

with appropriate correspondences for capacitances, whilea1 is given
by

a1 = R2

R

2
(C2+X)+ R2

R

2
1 +

R

R2

(C3+X): (20)

From (18) and (20), we see thata1 is larger for the near-end
configuration, which implies that our noise measure is larger for the
near-end configuration. Notice that the circuit equivalent in Fig. 5
corresponds exactly to the type of equivalent circuit obtained for a bus
where several lines are routed in parallel for long distances and have
no significant noise coupling from the lines running orthogonally on
adjacent layers. This suggests that with all else being equal it is best to
group all the lines being driven from the left end of a bus together and
to clump nets being driven from the right end together. This ensures
that nets are subjected to far-end noise, which is smaller. Also notice
that neither of the expressions in [5] and [13] have any directionality
dependence as they neglect a1. While they do distinguish cases where
resistive shielding is important, they fail to capture the directionality
dependence.

III. M ODEL FIDELITY AND ACCURACY

In this section we present experimental results which verify the
accuracy and fidelity of our expression for peak noise. For a wide
range of two-pin and multipin nets, we obtained peak noise using a
commercial extraction tool followed by HSPICE simulation using an
industrial extraction flow for a 0.35-�m CMOS technology. Notice
that all HSPICE simulation results are obtained using thenonlinear
device modelsfor drivers and receivers and our expressions use
the precharacterized linear equivalent resistances. We compare these
circuit simulation results to our peak noise expression (9) and the
expression in [15], which is essentially (19). Our experiments vary
transistor sizes, wire spacing, and the coupling length. About 600
cases have been compared for two-pin nets and about 300 cases for
multipin nets.

Fig. 7 shows the variation of peak noise with victim driver tran-
sistor width for two-pin nets. The new expression in (9) is always
pessimistic, while the expression in [15] can become optimistic
because it ignores interconnect resistance. The inter-wire spacing is
0.5�, the aggressor driver transistor width is 10� and the coupling
length is 100�. These are fairly typical values within standard-cell
blocks.

V =
(2R2 +R)X

R1(C1 + C3 + 2X) +R2(C2 + C4 + 2X) +R(C3 + C4 + 2X)� R2

R

2
(C2 + C3 + 2X)
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Fig. 8. Wire spacing effects (HSPICE).

Fig. 9. Wire spacing effects (new model).

Fig. 10. Noise versus coupling length (HSPICE).

Fig. 11. Noise versus coupling length (new model).

Fig. 8 shows HSPICE results for the variation of peak noise when
wire spacing varies from 0.5� to 3.0�. Fig. 9 shows the same curves
using our expression. Notice that our model tracks simulation results.

Figs. 10 and 11 show the variation of crosstalk with coupling
length as predicted by HSPICE and our expression, respectively. Both

Fig. 12. Multipin topologies.

TABLE I
PEAK NOISE ERRORS FORMULTIPIN NET TOPOLOGIES

driver sizing and increased spacing are very effective in reducing
crosstalk and our model captures such functional dependence.

We also ran numerous cases of multipin nets of five topologies
shown in Fig. 12, with coupling lengths varying from 100� to
2000�: Table I shows the maximum and average error of the new
expression for each topology, compared to HSPICE simulation.

We used our expression and the expression in [3], [5], and [13] to
compute the crosstalk for a two-line structure in a 0.35-�m CMOS
technology and compared these results with HSPICE. The aggressor
and victim driver widths are varied in the range of 0.5� to 10� and
the coupling length was varied from 100� to 2 mm. The results are
for rise times of 100 ps and 500 ps. In Table II, we show mean and
maximum errors of these different expressions.

The results of this section show that our expression tracks HSPICE
simulation closely. As our expression is straightforward to compute,
it can be used deep within an optimization loop which considers
crosstalk. We can also glean important intuition from its simplicity.
This is the focus of Section IV.

IV. DESIGN IMPLICATIONS

We use our expressions in formulations aimed at reducing crosstalk
in this section. These methods include transistor sizing, wire ordering,
wire width optimization and wire spacing.

A. Transistor Sizing

Many performance optimization methods which reduce delay also
increase crosstalk an effect which is ignored in classical formulations
of timing optimization techniques like transistor sizing [1], [7],
interconnect tree topology design and wire width optimization. Our
expressions allow these effects to be quantified and included in these
formulations. In this section, we generalize transistor sizing to handle
crosstalk constraints.

Consider two nets routed in parallel across their entire length as in
Fig. 5(a). We pose the problem—what are the optimum driver sizes
(1=R1 and1=R2) such that both crosstalk and timing constraints are
satisfied? The objective function is the sum of driver transconduc-
tances. The zero-noise timing constraints correspond to maximum
driver resistances on either line,R1m and R2m: The peak noise
constraints are obtained from (9) and correspond to the half-planes
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TABLE II
ERROR COMPARISONS OFPEAK NOISE EXPRESSIONSUNDER RAMP AGRESSORINPUTS

Fig. 13. Transistor sizing with timing and coupling constraints.

TABLE III
WIRE ORDERING AND OPTIMAL SIZING RESULTS

shown. The feasible region is shown in Fig. 13. It is possible to use
a sequence of solutions to the linear programming formulation in
[1] in order to handle the general problem ofn nets with crosstalk
constraints. The solution space in the general problem is not bounded
by linear polytopes as in the two-net problem. We do not explore the
n-net problem here due to space constraints. Details about the use of
our expression for transistor sizing appear in [14].

B. Wire Ordering

Consider an on-chip bus. We can reduce the noise by appropriate
ordering of the bus bits. This problem was stated in [15] and a
heuristic based on a traveling salesperson formulation was proposed,
but no results were reported. We propose a new heuristic.

Given any order of bus bits, we can find optimal transistor sizes
as indicated in Section IV-A. Our heuristic to find the order begins
with the pair of bits which minimizes the sum of transistor sizes.
This sequence is then grown by adding a new bit to the existing
subsequence, such that the incremental cost (the increase in the
sum of transistor sizes) is minimized. Our ordering is compared in
Table III to a random ordering followed by transistor sizing using
the linear-programming-based method. Gmin is the sum of transistor
sizes without crosstalk constraints. Notice that our bus ordering and
sizing enables the handling of crosstalk constraints with less than
5% penalty in the sum of transistor sizes. The wire order for 50
nets essentially achieves crosstalk correctness with virtually no area

Fig. 14. Wire width optimization with crosstalk and delay constraints.

penalty. The ratio of the sum of transistor sizes when transistors are
optimally sized by a random order to the sum when optimally sized
following our ordering is around 1.1. Run times for typical bus sizes
are reasonable and are for a 200-MHz SGI server running IRIX.

C. Wire Width Optimization

In this section, we add yet another method to our palette of
techniques aimed at crosstalk-correct layout: wire width optimization.
Wire width optimization is used for critical signals to increase the
line to effective ground plane (on adjacent layers) capacitances
such that the coupled noise is smaller. We show that the nonlinear
programming problem that arises is nonconvex, so several previous
solutions to transistor sizing are rendered inadequate. Note that
previous expressions [15] have functional dependence only from the
increased line capacitance driven but not the reduced line resistance,
so the problem formulation owes its existence to the new expression.

We consider the simple two-wire instance shown in Fig. 5(a)
to show that the solution space is nonconvex. We wish to com-
pute wire widths(w1; w2) of the two lines such that delay and
crosstalk constraints are satisfied. Each of the wires has a minimum
technology-specified width and maximum routable width. In classical
formulations, we would be interested in finding feasible wire widths
such that some cost function is minimized. In the presence of active
crosstalk constraints, there exists a closed region within the min-max
width rectangle which is infeasible. The feasible region is shown
in Fig. 14. The intuitive reason for nonconvex solution space comes
from the noise-delay product expression. The crosstalk on a net varies
inversely as the sum of the Elmore delays of the two nets. There is an
optimum wire width for minimum delay for each net given the load
capacitances, driver resistances, and capacitances per unit length. The
crosstalk at such a wire width is maximum. Under active crosstalk
constraints, a constant delay sum contour inw1 � w2 space would
be a contour of constant crosstalk, thus leading to the nonconvex
solution space shown.

D. Wire Spacing Optimization

The formulation in [10] assumes that crosstalk varies as the spacing
is changed according to some given linear function of the spacing.
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The term in (9) which varies with spacing is the coupling capacitance
X: We can use a Taylor series expansion of (9) about the current
spacing to obtain the crosstalk as a linear function of spacing. Thus,
our expression can be used in the formulation of [10] to space out
wires to handle crosstalk constraints.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed new expressions for peak noise
and pulse width in arbitrary topology networks. Our expressions
hold for nets with arbitrary number of pins, when driven by any
arbitrary specified input excitation. For the special case of victim
tree networks, we have shown that our expressions can be easily
computed. We showed that our work unifies several of the expressions
proposed in past work for crosstalk analysis. Our expressions have
been shown to exhibit high accuracy and fidelity compared to
HSPICE simulation on several hundreds of networks obtained from an
industrial extraction flow. We have also proposed a new formulation
for transistor sizing with crosstalk constraints. We have also shown
that several other formulations, including wire ordering, wire width
and spacing optimization can use our expressions.
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