Session 2: Fundamentals
Introduction to VLSI
Interconnect Design

Resistance

by definition is the ratio of potential difference of the wire ends to the total current flowing through it.

Skin Effect

At high frequencies, current tends to distribute near the surface of a conductor

Skin Effect

Scale of GSI interconnections is continually shrinking toward dimensions comparable with the mean free path of the electrons.
At the same time, interconnects operate at higher frequencies such that skin depth becomes in the same order of mfp of electrons.

Electrons in Metals

In D-L-S model the metal is divided into 2 different subsystems

The kinetic theory of gas is applied to the metal gas

Electrons in Metals

p = specularity parameter (the fraction of electrons that have elastic collisions at the wire surfaces) $(0<p<1)$

Validity of Asymptotic Solutions

Capacitance

- A capacitor is a passive electronic component that stores energy in the form of an electrostatic field.

In its simplest form, a capacitor consists of two conducting plates separated by an insulating material called the dielectric. The capacitance is directly proportional to the surface areas of the plates, and is inversely proportional to the separation between the plates.

Capacitance

Capacitance

Volume-based method: (finite-element, finite-difference)

+: accuracy, any complex structure

- : time consuming

Software: Maxwell, HFSS, Raphael

Capacitance

Surface-based method: (integral equation)

Green's function

Integral equation
(panel method, method of moments)

$Q=\int_{\text {surfoce }} \sigma\left(r^{\prime}\right) d a^{\prime}$

Software: Boundary Elements Method, FASTHENRY

Capacitance

Random-walk method: (stochastic)

Software: Random Logic Corp, QuicCap

Random walk: best for self cap for complicated net
Surface based: best for small coupling capacitance
Volume based: best for dealing with multiple dielectrics

Parallel Plate Approximation

Sakurai Formula

Inductance

- An inductor is a passive electronic component that stores energy in the form of a magnetic field.

In its simplest form, an inductor consists of a wire loop or coil. The inductance is directly proportional to the number of turns in the coil. Inductance also depends on the radius of the coil and on the type of material around which the coil is wound

Lumped RC model

$v_{c}(t)=V_{d d}\left(1-e^{-t / R C}\right)$ $t_{0.5}=0.693 R \bar{C}$
$t_{0.9}=2.3 R C$

Using parallel plate approximation

Distributed RC model

$V(t, L)=V_{d d}\left(1+K_{1} e^{\delta_{1} t}+K_{2} e^{\delta_{2} t}+\cdots\right)$

$t_{v}=R C\left(R_{T} C_{T}+R_{T}+C_{T}+(2 / \pi)^{2}\right) \ln \left(\frac{1}{1-v}\right)+0.1 R C$
$t_{0,}=2.3\left(R_{t} C_{t} R^{C}+R C_{t}\right)+R C$
$t_{0.5}=0.69\left(R_{s} C_{L}+R_{s} C+R C_{L}\right)+0.38 R C$

Noise Mode!

Two coupled lumped RC lines

Two coupled distributed RC lines

Noise Model
Combining these equations

Assuming $r_{1}=r_{2}=r$ and $c_{1}=c_{2}=c$ simplifies to:

Noise Model

Boundary conditions

Transformation

Solution:

Noise Model
Sakurai single line solution
$V(t, x=l) \approx V_{d d}\left(1+K_{1} \exp \left(\frac{-\sigma_{t} t}{R C}\right)\right)$

Plus solution

Minus solution
$V_{-}(t, x=L) \approx \frac{V_{d t}}{\sqrt{2}}\left(1-1.01 \frac{R_{T}+C_{T}^{-}+1}{R_{T}+C_{T}^{-}+\frac{\pi}{4}} \exp \left(\frac{-1.04 t}{R\left(C+2 C_{m}\right)} \frac{1}{R_{T} C_{T}^{-}+R_{T}+C_{T}^{-}+(2 / \pi)^{2}}\right)\right.$

Noise Model
Solving for t :

Ramp Input

Finite rise time? !

Ramp Input

Solution:
Transient voltage
Regenither

Ramp Input

Time delay expressions:

As $\mathrm{T}_{\text {rise }} \rightarrow 0$ converges to Sakurai

Ramp Input

Generalized delay formula for $\mathrm{RC}>\mathrm{T}_{\text {rise }}$

$$
4=(1804 \pi \%
$$

Coupled line solutions:

Faghombe mica

Ramp Input

Hspice comparison

Ramp Input

Peak crosstalk expression

Ramp Input

Ramp Input
Scaling independent:

Length dependence

Ramp Input

Scaling dependence

Ramp Input

Ramp Input

Driver resistance dependence

- An inductor is a passive electronic component that stores energy in the form of a magnetic field.

In its simplest form, an inductor consists of a wire loop or coil. The inductance is directly proportional to the number of turns in the coil. Inductance also depends on the radius of the coil and on the type of material around which the coil is wound

Inductance Formulas

Inductance of rectangular wires with return path at infinity

Inductance Formulas

Inductance of rectangular wires with return path in perfect ground plane

Inductance Formulas

Loop inductance for coplanar ground lines

RLC model - Semi Infinite

In its simplest

$$
\sin (x, s)=A \cos \{-x \sqrt{c \sqrt{c} \sqrt{(s+})}\rangle+\operatorname{sax}\{\sqrt{d c} \sqrt{s(s+1})\}
$$

$$
x(d)=\sqrt{a+w}=\sqrt{a}=\sqrt{8+\pi}
$$

RLC model - Semi Infinite

where

Note that:

Delay model:

RLC model - Delay Model

Capacitive load

Delay model:

RLC model - Rule of Thumb

- Transmission line effects should be considered when the rise or fall time of the input signal $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{t}}\right)$ is smaller than the time-of-flight of the transmission line ($\mathrm{t}_{\text {fight }}$).

$$
\mathrm{t}_{\mathrm{r}}\left(\mathrm{t}_{\mathrm{f}}\right) \ll 2.5 \mathrm{t}_{\text {filight }}
$$

- Transmission line effects should only be considered when the total resistance of the wire is limited:

$$
R<5 Z_{0}
$$

- The transmission line is considered lossless when the total resistance is substantially smaller than the characteristic impedance

$$
R<Z_{0} / 2
$$

RLC model vs Lumped RLC

47

RLC Line - Load Capacitance

RLC model - Coupled Lines

2 coupled distributed RLC interconnects A (active) and Q (quiet).

3 coupled distributed RLC interconnects

RLC model - Noise Model

