News:
  • Welcome



General Information:

Lecturer:           Reza Sarvari (office EE210)  

Classes:            Saturday-Monday 13:30-15:00    ;  Classroom ?

Texts:       link Miller, Quantum Mechanics For Scientists and Engineers, Cambridge, 2008
               
 pdf Khurasani, Applied Quantum Mechanics(in Persian), Delarang, 2010 
               
 link Levi, Applied Quantum Mechanics, Cambridge, 2006
  
              link Sakurai, Modern Quantum Mechanics, Addison-Wesley, 2010 .
 
Supplemental:
                 link Griffiths, Introduction to Quantum Mechanics, Pearson, 2009
                 link Griffiths, Consistent Quantum TheoryCambridge, 2006 (free to download)
                 link van Dommelen, Quantum Mechanics for Engineers, Online Book
                 link Dr. Karimipour's Lecture notes in Farsi

                                 
Syllabus:           

Grades(tentative):  20%    Homeworks
                             40%    2 Mid-terms
                             40%    Final Exam



Homeworks/Exams and solutions: 


            homework 1  ;   solution 1





Lectures:


Introduction and Background:
  • History of Quantum Mechanics (Black body radiation, Photoelectric, Bohr model)
  • Applications of quantum mechanics
  • Some experiments (diffraction by two slits)






Schrodinger’s equation:
  • Wave function and probability density
  • Linearity and normalization of wavefunction
  • Particle in box (infinite & finite Q well)
  • Potential barrier and Tunneling
  • Harmonic oscillator
  • Particle in a linearly varying potential




Time-dependent Schrodinger equation:
  • Time-dependent Schrodinger equation
  • Solutions of the TD Schrodinger equation
  • Time dependence and expansion in the energy eigenstates
  • Time evolution of wavepackets (infinite potential well & harmonic oscillator)
  • QM measurement and expectation values
  • Hamiltonian
  • Operators and expectation values
  • Uncertainty principle


Functions and operators:
  • Functions as vectors
  • Operators, Linear operators
  • Hermitian operators
  • Matrix form of operators
  •   



A:
  • b
  • c
  • d
  • e
  • f  



A:
  • b
  • c
  • d
  • e
  • f  



A:
  • b
  • c
  • d
  • e
  • f  



A:
  • b
  • c
  • d
  • e
  • f  



A:
  • b
  • c
  • d
  • e
  • f  



A:
  • b
  • c
  • d
  • e
  • f  







Same/Ralated Courses at Other Schools!








Useful Links: