Session 1: Lithography Nano Technology

Terminology and Relative Sizes

Lithography

Moore's law:

feature sizes shrank by a factor of 2 every 18 months

nanolithography
UV (EUV) optical lithography
X-ray lithography
Nanoimprinting
block copolymer self-assembly use of supercritical fluids nonlinear two-photon lithography electron beam lithography

Fabrication Processes for VLSI

The minimum feature size (the minimum line width or line to line separation) control the number of circuits that can be placed on the chip and has a direct impact on circuit speed. The evolution of IC is therefore closely linked to the evolution of lithographic tools.

From Photo-Lithography to Chip

Computer chips are made using photolithography (using light to transfer a pattern from a photomask to a light-sensitive chemical (photoresist))

Role of the Resist:
Light exposure changes solubility and allows mask formation

Packaging

Conventional Photoresists

Solvent:
 gives the resist its flow characteristics

Resin: mix of polymers that hold the resist together; gives the resist its mechanical and chemical properties

Sensitizers:
sensitive to light; these will react when exposed to light

Additives:
chemicals that control other aspects of the resist material

Positive vs. Negative Photoresist

Positive Photoresist:

Exposed areas \rightarrow dissolvable
3. Expose to UV light

4. Develop and rinse

5. Etch patterns into wafer

6. Remove residual photoresist

Negative Photoresist:
Unexposed areas \rightarrow dissolvable
4. Develop and rinse

5. Etch patterns into wafer

6. Remove residual photoresist

Moore's Law and Lithography

Masks

Contact Printing:

+ Simple, cheap
- Poor resolution
- Bad mask lifetime
- Defects

Proximity Printing:

+ Minimal mask damage
- Poorer resolution
- Diffraction error

\square Substrate

Projection Printing:

+ Higher resolution
+ lens reduces diffraction error
- Optical system

UV Optical Lithography

projection lithography 2005: (65nm) $\lambda=193 \mathrm{~nm}$

Optical lithography:

+ High throughput
+ Low cost
- Diffraction limited

$$
H P=\frac{k_{1} \lambda}{N A}=\frac{k_{1} \lambda}{n \sin \theta}
$$

numerical aperture
$\theta=$ half-angle of the converging beam

Photolithography $=$ NA,k_{1}

K1:
quality of the photoresist phase shift masks off-axis illumination optical proximity correction

NA:
Larger lens

UX Optical Lithography

Subwavelength era: printing 1 inch line with 3 inch brush

Next Generation Lithography

(a)

(c)

(b)

IONS

(d)

		λ	E
$\stackrel{\overline{\overline{00}}}{\stackrel{\rightharpoonup}{\square}}$	UV	400 nm	3.1 eV
	Deep UV	250 nm	4.96 eV
	X-ray	0.5 nm	2480 eV
	Electrons	$0.62 \mathrm{~A}^{\circ}$	20 KeV
	Ions	$0.12 \mathrm{~A}^{\circ}$	100 Kev

EUV Lithography

O Uses very short 13.4 nm light
O All reflective optics (at this wavelength all materials absorb!)

- Uses reduction optics (4 X)
- Step and scan printing

O Optical tricks seen before all apply: off axis illumination (OAI), phase shift masks and OPC
O Vacuum operation

- Laser plasma source

O Very expensive system

Electron Beam Lithography

+ Highest resolution of mainstream litho. tech.
+ Flexibility (no mask required)
+ Simplified resist processing
- Exposure needs to be done in vacuum.
- Substrate charging/damage
- Throughput!

Schematic of an EBL machine

Electron Beam Lithography

about 10 nm
low-energy electrons
a high-resolution resist (calixarene)
slow serial writing

Proton-Beam Writing

MeV protons

more massive protons:

straight path, 3D, high aspect ratio structures with vertical, smooth sidewalls (Fig. 3.64b), and lateral resolutions down to 22 nm

$$
m_{p}=1800 m_{e}
$$

Nano－imprint Lithography（NIL）

low－cost，high－resolution patterning technique（sub 45nm）
patterns can be repeatedly transferred from a mold to some polymeric material with a 5－nm horizontal patterning resolution

UV－NIL
（1）Dispense

（3）Separate
（4）Etch Process
processing flow of ultraviolet－assisted nanoimprint lithography（UVNIL）

Dip-Pen Nanolithography (DPN)

scanning probe microscopy-based nanofabrication technique uses an "ink"-coated AFM tip to pattern a surface with a sub 50nm resolution and without pre-modification of the surface.
a versatile tool for depositing soft and hard materials on a variety of surfaces
Inks: small organic molecules, polymer, DNA,proteins, nanoparticles, and metal ions

Dip-Pen Nanolithography (DPN)

Molecular inks

Liquid inks

Block Copolymer Lithography

"bottom-up" combined with conventional "top-down" (less than 45 nm)
In block copolymers two chemically dissimilar polymer chains are covalently linked together at one end.

S
G^{\prime}

C

G

L

C^{\prime}

\mathbf{S}^{\prime}
nanodomain morphologies of diblock copolymers: spherical (S, S) , cylindrical (C, C) , gyroid (G,G) , lamellar (L)

Block Copolymer Lithography

Diblock Copolymer Lithography
Remove polymer block within cylinders
(expose and develop)

Deposition Template
(physical or electrochemical)

Etching Mask

Nanoporous
Membrane

Protein Nanolithography

advantages for sensing biomedical protein-protein interactions, due to short diffusion times, parallel detection of multiple targets, and the requirement of only tiny amounts of samples

His-tagged protein1
Writing direction

Two-Photon Lithography for Microfabrication

two-photon absorption processes in certain chromophores that can simultaneously absorb two photons to produce a photochemical reaction characteristic for radiation of twice the energy.

Outside the focal point, the incident light is below the absorbance threshold. Therefore, by tightly focusing a femtosecond laser beam into a resin, photo-induced reactions such as polymerization occur only close to the focal point allowing the direct writing of 3D patterns by sample scanning.

commercial two-photon resin: SCR 500

Session 2: VLSI
Nano Technology

(1906) Vacuum Tube ; Triode

The 1946 ENIAC computer used 17,468 vacuum tubes and consumed 150 kW of power

Lee De Forest (1873 -1961)

Field Effect Transistor

Julius Edgar Lilienfeld (1882-1963)

DEVICES FOR CONTROLLED ELECTRIC CURRENT,

Filed March 28, 1928

UNITED STATES PATENT OFFICE

J. E. LILIENFELD

CUのS Device ron contanlline zlectaic cunatat

Bé|l Labs, 1948

J. Bardeen, W. Brattain, W. Shockley

1958, Kilby, Texas Instruments

Jack St. Clair Kilby (1923-2005)

1960, Noyce, planar integrated circuit

Robert Norton Noyce(1927-1990)

Co-founder of Fairchild Semiconductor and Intel

Early IC - Fairchild

1960, MOSFET, D. Kahng and M. Atalla

Bell Labs

1964 - Op-Amp uA702, Fairchild

1965 - Op-Amp uA709, Fairchild

1970 - SRAM 256 Bit, Fairchild

(585in

1970-1024 Bit DRAM, Inte|

1970 - CCD 8 Bit, Bell Labs

1971 - Microprocesssador 4004, Inte|

2001-256Mbit DRAM , TOSHIBA

Circuits: from 1961 to 2005

The first planar integrated circuit, 1960.

Designed and built by Lionel Kattner and Isy Haas under the direction of Jay Last at Fairchild Semiconductor.

The Intel "Montecito" microprocessor, 2005

Scaling of MOSFET Dimensions

Trends in Semiconductor/CMOS Market

Semiconductors have become increasingly more important part of world economy

CMOS has become the pervasive technology

In 2000: 0.7% of GWP
Today: 5% of GWP

Interconnect?!

2 Major problems facing Moore's law:

- Power dissipation
- Interconnects

IBM Cu technology

from IBM
Cross-section of 64-bit highperformance microprocessor

Connectivity and Complexity

Challenge of System Complexity

Moore's Law

Moore's Law, the empirical observation that the transistor density of integrated circuits doubles every 2 years.

Moore: Moore's law has been the name given to everything that changes exponentially. I say, if Gore invented the Internet, I invented the exponential.

Moore's Law in Perspective

The number of transistors shipped in 2003 had reached about 10^{18}. That's about 100 times the number of ants estimated to be in the world.

A chip-making tool levitated images within a tolerance of $1 / 10,000$ the thickness of a human hair - a feat equivalent to driving a car straight for 1000 km while deviating less than one 3.8 cm .

It would take you about 25,000 years to turn a light switch on and off 1.5 trillion times, but Intel has developed transistors that can switch on and off that many times each second..

Moore's Law in Perspective

In 1978, a flight between New York and Paris cost around $\$ 900$ and took 7 hours. If the principles of Moore's Law had been applied to the airline industry the way they have to the semiconductor industry, that flight would now cost about a penny and take less than 1 sec.

The price of a transistor is now about the same as that of one printed newspaper character.

Intel has developed transistors so small that about 200 million of them could fit on the head of each of these pins.

Intel $\mu \mathrm{P}$ Trends

- Intel 4004: first single-chip microprocessor
- November 15, 1971
- Clock rate 740 kHz
- Bus Width 4 bits (multiplexed address/data due to limited pins)
- PMOS
- 2,300 Transistors at $10 \mu \mathrm{~m}$
- Addressable Memory 640 bytes
- Program Memory 4 KB (4 KB)

- Intel Core i7
- Today
- Clock rate 2.66GHz-3.33GHz
- 64 bit processor
- 4 cores
- 731M Transistors at 45 nm
- Oregon 32 nm plant
- Price 273-562 \$
- 263 mm2 die size

Moore's Law \& Die Size

Moore was not always accurate Projected Wafer in 2000, circa 1975
Die size has grown by 14% to satisfy Moor's law, BUT the growth is almost stopped because of manufacturing and cost issues

The die size of the processor refers to its physical surface area size on the wafer, the first generation Pentium used a 0.8 micron circuit size, and required $296 \mathrm{~mm}^{2}$ per chip. The second generation chip had the circuit size reduced to 0.6 microns, and the die size dropped by a full 50% to $148 \mathrm{~mm}^{2}!!!$

Trends in Clock Frequency

Lead microprocessors frequency doubles every 2 year, BUT the growth is slower because of power dissipation issue

Gate Insulator Thickness in 65nm

Problem: Electrons can easily jump over the 5 atomic layers!
This is known as leakage current

Power Density Problem

Power density too high to keep junction at low temperature.
Power reaching limits of air cooling.

Power Density Problem

Power = 115 Watts
Supply Voltage $=1.2 \mathrm{~V}$
Supply Current = $115 \mathrm{~W} / 1.2 \mathrm{~V}$ = 96 Amps!

Note:
Fuses used for household appliances $=15$ to 40 Amps

Problem:
Current density becomes a serious problem!
This is known as electromigration

$$
\begin{aligned}
& \text { Power }=115 \mathrm{Watts} \\
& \text { Chip Area }
\end{aligned}=2.2 \mathrm{~cm}^{2} \text { (} \begin{aligned}
\text { Heat Flux } & =115 \mathrm{~W} / 2.2 \mathrm{~cm}^{2} \\
& =50 \mathrm{~W} / \mathrm{cm}^{2}!
\end{aligned}
$$

Notes:
Heat flux in iron = 0.2 W/cm² Heat flux in frying pan $=10 \mathrm{~W} / \mathrm{cm}^{2}$

Problem:
Heat flux is another serious issue!

Transistor Sçaling

$$
\begin{aligned}
T_{\text {Delay }} & =C_{\text {Gate }} \frac{V_{D D}}{I_{\text {Drive }}} \\
& =\frac{W L}{T_{o x}} \frac{V_{D D}}{I_{\text {Drive }}} \\
I_{\text {Drive }} & =\frac{W}{L T_{o x}} \cdot\left(V_{D D}-V_{T h}\right)^{2}
\end{aligned}
$$

Scaling Issues:

- Channel length modulation
- Drain induced barrier lowering
- Punch through

$$
T_{\text {Delay }}=L^{2} \frac{V_{D D}}{\left(V_{D D}-V_{T h}\right)^{2}}
$$

- Sub-threshold current
- Field dependent mobility / Velocity saturation
- Avalanche breakdown and parasitic bipolar action
- Oxide Breakdown
- Interconnect capacitance
- Heat production
- Process variations
- Modeling challenges

Limit of "Moore's Law"?

O What is behind this fantastic race of development of the IC technologies?

- Is it the "technological" will and motivation of the people involved?
- Or/and is it the economical drive the main force?
- Semiconductor industry sales:
- 1962, > \$1-billion
- 1978, > \$10-billion
- 1994, > \$100-billion

2 prominent technical:
(DRAM), uP

Will physics or economics stop Moore's law ?
a law of human ingenuity, not of nature

Physical limits to computation

The min. energy perform a logic operation in time Δt

$$
E \geq \pi \hbar / 2 \Delta t \quad \hbar=1.0545 \times 10^{-34} \mathrm{~J} . \mathrm{s}
$$

max \# of operations per second $\quad N=2 E / \pi \hbar$

$$
\begin{array}{lr}
\text { Entropy } \\
& S=k_{B} \ln W \quad \text { \# of states } \\
k_{B}=1.3805 \times 10^{-23} \mathrm{~J} / \mathrm{K}
\end{array}
$$

\# of bits

$$
m=S / k_{B} \ln 2
$$

$$
\frac{\text { operation }}{\text { bit. sec }}=\frac{N}{m}=\frac{2 E k_{B} \ln 2}{\pi \hbar S} \quad \sim \frac{2 k_{B} T \ln 2}{\pi \hbar}
$$

minimal amount of energy required to 1 bit : $\sim k_{B} T \ln 2$

Min. Transistor Switching Energy

ITRS '97-03 Gate Energy Trends

Economic trends

Product lifecycles and the products selling prices are decreasing at an increasing rate.
(Based on information from DataQuest and MicroDesign Resources)

ITRS

The International Technology Roadmap for Semiconductors is sponsored by the five leading chip manufacturing regions in the world: Europe, Japan, Korea, Taiwan, and the United States

http://www.itrs.net/reports.html

"Prediction is very difficult, especially if it's about the future"
Niels Bohr

Interconnect Architecture

Wire Geometry

- Pitch = w + S
- Aspect ratio: AR = t/w

Old processes had AR $\ll 1$
Modern processes have $A R \approx 2$
Pack in many skinny wires

ITRS Intercconnect Technology Reaquirement

Short Term

Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM 1 1/2 Pitch (nm) (contacted)	80	70	65	57	50	45	40	36	32
MPU/ASIC Metal $11 / 2$ Pitch (nm)(contacted)	90	78	68	59	52	45	40	36	32
MPU Physical Gate Length (nm)	32	28	25	22	20	18	16	14	13
Number of metal levels	11	11	11	12	12	12	12	12	13
Number of optional levels - ground planes/capacitors	4	4	4	4	4	4	4	4	4
Total interconnect length $\left(\mathrm{m} / \mathrm{cm}^{2}\right)-$ Metal 1 and five intermediate levels, active wiring only [1]	1019	1212	1439	1712	2000	2222	2500	2857	3125
FITs $/ \mathrm{m}$ length $/ \mathrm{cm}^{2} \times 10^{-3}$ excluding global levels [2]	4.9	4.1	3.5	2.9	2.5	2.3	2	1.8	1.6
$\begin{aligned} & \mathrm{J}_{\max }\left(\mathrm{A} / \mathrm{cm}^{2}\right) \text { - intermediate wire } \\ & \text { (at } \left.105^{\circ} \mathrm{C}\right) \end{aligned}$	$8.91 \mathrm{E}+05$	$1.37 \mathrm{E}+06$	$2.08 \mathrm{E}+06$	$3.08 \mathrm{E}+06$	$3.88 \mathrm{E}+06$	$5.15 \mathrm{E}+06$	$6.18 \mathrm{E}+06$	$6.46 \mathrm{E}+06$	$8.08 \mathrm{E}+06$
Metal 1 wiring pitch (nm)	180	156	136	118	104	90	80	72	64
Metal $1 \mathrm{~A} / \mathrm{R}$ (for Cu)	1.7	1.7	1.7	1.8	1.8	1.8	1.8	1.8	1.9
Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known									

ITRS Interconnect Technology Requirement

Long Term

Year of Production	2014	2015	2016	2017	2018	2019	2020
DRAM $1 / 2$ Pitch (nm) (contacted)	28	25	22	20	18	16	14
MPU/ASIC Metal 1 1/2 Pitch (nm) (contacted)	28	25	22	20	18	16	14
MPU Physical Gate Length (nm)	11	10	9	8	7	6	6
Number of metal levels	13	13	13	14	14	14	14
Number of optional levels - ground planes/capacitors	4	4	4	4	4	4	4
Total interconnect length $\left(\mathrm{m}^{\prime} \mathrm{cm}^{2}\right)$ - Metal 1 and five intermediate levels, active wiring only [1]	3571	4000	4545	5000	5555	6250	7143
FITs/m length/cm ${ }^{2} \times 10^{-3}$ excluding global levels $[2]$	1.4	1.3	1.1	1	0.9	0.8	0.7
$\mathrm{~J}_{\text {max }}\left(\mathrm{A} / \mathrm{cm}^{2}\right.$) - intermediate wire (at $\left.105^{\circ} \mathrm{C}\right)$	$1.06 \mathrm{E}+07$	$1.14 \mathrm{E}+07$	$1.47 \mathrm{E}+07$	$1.54 \mathrm{E}+07$	$1.80 \mathrm{E}+07$	$2.23 \mathrm{E}+07$	$2.74 \mathrm{E}+07$
Metal 1 wiring pitch (nm)	56	50	44	40	36	32	28
Metal 1 A/R (for Cu)	1.9	1.9	2	2	2	2	2

Manufacturable solutions exist, and are being optimized
Manufacturable solutions are known
Interim solutions are known
Manufacturable solutions are NOT known

VLSI Industry

semiconductor industry(2006): revenues of ~ 200 billion US \$ annually
Computer:
Volatile Memories
static random access memory (SRAM)
dynamic random access memory (DRAM). They are fast but need Non
Volatile Memories:
hard disc drive (HDD). (six orders of magnitude slower than SRAM)
Moore's law: the density of transistors on a silicon-based integrated circuit (IC), and so the attainable computing power, doubles about every 18 months,

	1980	$\mathbf{2 0 0 7}$
time	2 day	10 ms
x		$20,000,000$
Hardware x		4,000

Moore's Law!

Gate Tunneling

60\% bigger capacitance
100x reduction in gate leakage

New high-performance transistors

$$
\frac{I_{O N}}{I_{O F F}}>10^{11}
$$

silicon-based single-electron transistor

Carbon nanotube electronics

Mobility and mean free path?

Graphene NanoRibbon Field Effect Transistor

$$
\begin{aligned}
& \frac{I_{O N}}{I_{O F F}} \sim 10^{6} \\
& I_{O N} \sim 2000 \mu \mathrm{~A} / \mu \mathrm{m}, \\
& \mu \sim 200 \mathrm{~cm}^{2} / \mathrm{Vs}, \\
& \lambda \sim 10 \mathrm{~nm},
\end{aligned}
$$

Flash Memory

invented by Dr.Fujio Masuoka in 1980 at Toshiba
data stored in multiple memory cells to be erased in a single action (a "flash")
Issue: crosstalk

Flash Memory

Flash is EEPROM (Electronically Erasable Programmable Read Only Memory)
You may find FLASH in:

- computer's BIOS chip
- CompactFlash
- Memory Stick

NAND type is primarily used in main memory, memory cards, USB flash drives, solid-state drives (greater storage density and lower cost per bit)
The NOR type, (allows true random access) used as a replacement for the older EPROM

Flash Memory

Flash Memory

Flash Memory

Programming a NOR memory cell (setting it to logical 0), via hot-electron injection
Programming Viá Hot Electron Injection

Erasing a NOR memory cell (setting it to logical 1), via quantum tunneling

Memory Technologies

Parameter	Conventional technologies			Emerging technologies			Prototypes
	SRAM	DRAM	Flash	PRAM	MRAM	FeRAM	NRAM
Read speed	Fastest	Medium	Fast	Fast	Fast	Fast	Fast
Write speed	Fastest	Medium	Slow	Fast	Fast	Med.	Fast
Cell density	Low	High	Medium	High	High	Med.	High
Process technology, nm	130	80	56	90	130	130	22
Nonvolatility	No	No	Yes	Yes	Yes	Yes	Yes
Future scalability	Good	Limited	Limited	Exell.	Good	Limited	Scalable

Magnetoresistive random-access memory
Phase-change memory
Ferroelectric RAM
Nano-RAM

Flash Memory

