Session 1: Advanced Solid State Physics

Introduction Solids - Crystals

Outline

- Introduction
- Course information
- Technology
- State of matter
- Micro/macro -oscopic aspects of matter
- Crystal
- Bravis lattice
- Primitive unit cell, unit vectors, Wigner-Seitz unit cell
- Basis, Crystal
- Example: Graphene
- Cubic Lattices
- SC, BCC, FCC, Zinc Blende
- Other
- Symmetry
- Miller Indices

Introduction-Course Information

Course homepage:
http://ee.sharif.edu/~sarvari/Teaching.html
Refresh the page!

Grading (tentative):
2-MidTerms (40\%) + HW \& Quizzes (20\%) + Final (40\%)
http://cw.sharif.edu/
? Aban , ? Azar

Technology Challenges

Scurve
performance
Bipolar 1947-1980s
 Bio-electronics

Abbreviated Periodic Table

1. Introduction
2. Crystal
3. Cubic Lattices
4. Other
5. Miller Indices

Elements:
Si, Ge, C

Binary:
III-V: GaAs, Inp
II-VI: ZnSe (zinc selenide), CdTe (cadmium telluride)
IV-IV: SiC
IV-VI: PbS (lead sulphide)

Alloys:
ternary: $\mathrm{Al}_{1-\mathrm{x}} \mathrm{Ga}_{1-x} \mathrm{As}, \mathrm{Hg}_{1-x} \mathrm{Cd}_{\mathrm{x}} \mathrm{Te}$

Quaternary: $\mathrm{In}_{1-x-y} \mathrm{Ga}_{\mathrm{x}} A \mathrm{I}_{\mathrm{y}} \mathrm{As}, \mathrm{In}_{1-x} \mathrm{Ga}_{\mathrm{x}} A \mathrm{~s}_{1-\mathrm{y}} \mathrm{P}_{\mathrm{y}}$

Not all combinations possible:
lattice mismatch, room temp. instability, etc. are concerns

States of Matter

? Why Solid State?

1. Solid: density ~ $10^{22} / \mathrm{cm}^{3}$
2. a: Crystal: long range order (lattice + basis) \{Ex: Epitaxial silicon and diamond\}
3. b: Polycrystal: short range order ($\mu \mathrm{m} \sim 10 \mu \mathrm{~m}$) \{Ex: Most metals (Al, Cu) Ploy-Si\}
4. c: Amorphous: no order \{Example: Glasses like SiO2\}
5. Liquids: no order, takes the shape of the container, weak bounds; density ~ $10^{19} / \mathrm{cm}^{3}$
6. Gases: no order, no bounds between molecules
7. Liquid crystals: atoms mobile, type of long range order Applications: LCDs

8. Plasma: lonized gas/liquid \{Ex: Sun, Aurora, Lightning, (RIE, Sputtering, PECVD)\}

Why WE Should care?

Isn't it for physics / Chemistry / Material Science Department?

1. Solid: density $\sim 10^{22} / \mathrm{cm}^{3}$
a: Crystal: long range order (lattice + basis)
\{Example: Epitaxial silicon and diamond\}
b: Polycrystalline: short range order ($\mu \mathrm{m} \sim 10 \mu \mathrm{~m}$)
\{Example: Most metals (Al, Cu) Ploy-Si\}
c: Amorphous: no order
\{Example: Glasses like SiO_{2} \}

Resistivity

Ohm's law

$$
R=\frac{V}{I} \rightarrow \rho=R \frac{A}{L} \quad \text { resistivity }
$$

Resistivity is characteristic of the material

Art of VLSI design is:
to put together materials with different resistivity's next to each other to perform a certain task.

Semiconductors

In semiconductors: conductivity is controllable
In conductors: carriers are "electrons" In semiconductors: carriers are "electrons" + "holes"

A Little History-Crystal Structure

Solids tend to form ordered crystals

Rock Candy

Mineralogists have been familiar with crystal structures since 18th century. 1912: Diffraction of x-rays by a periodic array.
Today : Condensed matter physics long way to go

Properties (mechanical, electrical, optical and thermal properties all affected) of solids depends on their structure

Crystal Lattice

Image of graphene in a transmission electron microscope.

Bravais Lattice

Ideal Crystal: Infinite repetition of identical structural units in space.

Lattice

Bravais lattice: is the set of points defined by $\vec{R}=n_{1} \overrightarrow{a_{1}}+n_{2} \overrightarrow{a_{2}}$ as n_{i} is integer. Shortest possible $\overrightarrow{a_{1}}$ gives us primitive vectors.
The volume cell enclosed by the primitive vectors is called the primitive unit cell.

Unit cells / Wigner-Seitz cell for a rectangular 2-D lattice

1. Introduction
2. Crystal
3. Cubic Lattices
4. Other
5. Miller Indices

प닌|l| $\square \square \square$

1-D Lattices

Crystal structure = Lattice + Basis

Ideal Crystal: Infinite repetition of identical structural units in space.

Crystal structure = Lattice + Basis

Ideal Crystal: Infinite repetition of identical structural units in space.

Crystal structure = Lattice + Basis

Bravais Lattices in 2D

There are only 5 Bravais lattices in 2D
Centered Rectangular

Hexagonal

Square

17

Crystal Lattice, Graphene

Example: Graphene
Honeycomb structure

Bravais Lattices in 3D

There are 14 Bravais lattices in 3D

Cubic Lattices

Diamond Lattice

Zinc Blende Structure

Simple cubic (SC)

Example:

alpha polonium
Coordination Number (\# of nearest nbs.) = \# of atoms/cell = Packing fraction =

Body-centered cubic (BCC)

Coordination Number (\# of nearest nbs.) = \# of atoms/cell = Packing fraction =

Face centered cubic (FCC)

Example:

Gold,

Coordination Number (\# of nearest nbs.) = \# of atoms/cell =
Packing fraction =

Diamond Lattice

1. Introduction
2. Crystal
3. Cubic Lattices
4. Other
5. Miller Indices

Example:

Silicon, Germanium, Carbon

Coordination Number (\# of nearest nbs.) = \# of atoms/cell =
Packing fraction =

27

Diamond Lattice

1. Introduction
2. Crystal
3. Cubic Lattices
4. Other
5. Miller Indices

Example:

Silicon, Germanium, Carbon

Coordination Number (\# of nearest nbs.) = \# of atoms/cell = Packing fraction $=$
cell volume:
$(0.543 \mathrm{~nm})^{3}=1.6 \times 10^{-22} \mathrm{~cm}^{3}$
Density of silicon atoms
$=(8$ atoms $) /($ cell volume $)=5 \times 10^{22}$ atoms $/ \mathrm{cm}^{3}$

Zinc Blende Structure

III-V semiconductors, important for optoelectronics.

GaAs, InP, InGaAs, InGaAsP,........

For GaAs:
Each Ga surrounded By 4 As, Each As Surrounded by 4 Ga

Symmetry

Many physical properties depends on the symmetry
n - fold rotational symmetry

$$
C_{n}: 2 \pi / n \text { rotation }(n=1,2,3,4,6)
$$

Inversion center symmetry

$$
I: r \mapsto-r \quad \text { no center symmetry } \rightarrow \text { piezoelectricity }
$$

plane of symmetry (reflection)

$$
\sigma
$$

rotation - inversion symmetry

$$
S_{n}: C_{n}+\sigma
$$

Symmetry

1. Introduction
2. Crystal
3. Cubic Lattices
4. Other
5. Miller Indices

$I: r \longmapsto-r$

M. C. Escher

2. Crystal
3. Cubic Lattices
4. Other
5. Miller Indices

SCIENCE VOL 31523 FEBRUARY 2007
 Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture

Peter J. Lu ${ }^{1 *}$ and Paul J. Steinhardt ${ }^{2}$
http://www.npr.org/templates/story/story.php?storyld=7544360 http://wwwphy.princeton.edu/~steinh/islamictilings.html

Miller Indices

A method to label distinct planes and direction within a crystal structure. steps:

1. Note where the plane to be indexed intercepts the axes (chosen along unit cell directions). Record result as whole numbers of unit cells in the x, y, and z directions, e.g., 2, 1, 3.
2. Take the reciprocals of these numbers, e.g., $1 / 2,1,1 / 3$
3. Convert to whole numbers with lowest possible values by multiplying by an appropriate integer, e.g., x6 gives 3, 6, 2.
4. Enclose number in parentheses to indicate it is a crystal plane categorization, e.g., $(3,6,2)$

Miller Indices

Planes parallel to a unit cell coordinate axis are viewed as intercepting the axis at infinity, so have an associated Miller index in that direction of zero, e.g., (100) plane. Planes intersecting along the negative axis use a bar over the index rather than a negative sign, e.g., $\overline{1}$ rather than -1 , e.g., ($1 \overline{1} 1$) .
Groups of equivalent planes,((100), (010), (001), ($\overline{1} 00$), ($0 \overline{1} 0$), and ($00 \overline{1}$)all equivalent because rotation about the 3 fold axes on the cube diagonals maps the various faces into one another, making the planes equivalent) are notated in curly brackets, i.e., $\{100\}$ for the above set of equivalent planes.

Miller Indices

Similar procedure can be used to define Miller indices for directions.

1. Set up a vector of arbitrary length in the direction of interest (must be a crystal direction, i.e., connecting two crystal points)
2. Decompose the vector into its basis vector components in the a, b, and c directions
3. Convert the resulting numbers to the lowest possible set of integers by multiplying by an appropriate number
Directions are notated using square brackets, e.g., [1111]
For cubic crystals, directions perpendicular to particular crystal planes can be indexed using the same index as the plane. Sets of equivalent directions are specified by triangular brackets, e.g., $\langle 100\rangle$

$$
[h, k, l] \perp(h, k, l)
$$

Miller Convention Summary

Convention	Interpretation
$(h k l)$	Crystal plane
$\{h k l\}$	Equivalent planes
$[h k l]$	Crystal direction
$\langle h k l\rangle$	Equivalent directions

Crystallographic Planes

2. Crystal

3. Cubic Lattices
4. Other
5. Miller Indices

