News:
  • Welcome



General Information:

Lecturer:           Reza Sarvari (office EE210)  

Classes:            Saturday-Monday 13:30-15:00    ; 

Texts:       .(S1) link Simon, The Oxford Solid State Basics, Oxford University Press , 2013
                 .(K1) link Kittel, Introduction to Solid State Physics, John Wiley and Sons, 2004
                 
.(A)   link Ashcroft and Mermin, Solid State Physics, 1976
                
.(K2) link Kittel and Kroemer, Thermal Physics, W.H. Freeman, and Co, 1980
  
              .(P)   link Pierret, Advanced Semiconductor Fundamentals, Prentice Hall, 2002
                 .(K3) link Kasap, Principles of Electronic Materials and Devices, McGraw-Hill, 2018
                 .(M)  link Merhav, Statistical Physics: a Short Course for Electrical Eng., 2013 


Supplemental:
  link Moliton, Solid State Physics for Electronics, 2009
                         pdf Galperin, Introduction to Modern Solid State Physics 
                                 
Syllabus:           

Grades(tentative):  20%    Homework
                             30%    2 Mid-terms + 20% Quizes
                             30%    Final Exam



Homeworks/Exams and solutions: 

            homework 1  ;   sol 1  ;   sol1 ;


Lectures: (  Google Drive
10
            Lecture01      (  Lecture01  ) Statistical Physics Basics, Overview
            Lecture01p    (  Lecture01p ) Example: Ideal Gas
            Lecture02      (  Lecture02  ) Kinetic Theory - Maxwell Distribution
            Lecture03      (  Lecture03  ) Elementary Statistical Physics
            Lecture04      (  Lecture04  ) The Canonical Ensemble
            Lecture05      (  Lecture05  ) Fermi-Dirac Stat.
            Lecture06      (  Lecture06  ) Quantum Mechanics, History, Introduction
            Lecture07      (  Lecture07  ) Quantum Mechanics,
            Lecture08      (  Lecture08  ) Specific Heat of Solids
            Lecture09      (  Lecture09  ) Drude Theory of Metals
            Lecture10      (  Lecture10  ) Sommerfeld Theory of Metals
            Lecture11      (  Lecture11  ) Chemical Bonds - Ionic, Covalent
            Lecture12      (  Lecture12  ) 1-d Vibrations of Monoatomic Chain, Phonon
            Lecture13      (  Lecture13  ) 1-d Vibrations of Diatomic Chain
            Lecture14      (  Lecture14  ) Crystal Structure
            Lecture15      (  Lecture15  ) Reciprocal Lattice, Waves in crystals
            Lecture16      ( Lecture16.png  ) Tight Binding
            Lecture17      ( Lecture17.png  ) Near Free Electron
            Lecture18      (  Lecture18  ) Kroning-Penney, Band Structure
            Lecture19      (  Lecture19  ) Band Theory 
            Lecture20      (  Lecture20  ) Electron, Hole


            Notes01  

Slides: 

             01  
             02  
             03  




Lectures:

Structures of crystals: 
  • Materials: crystalline, poly-crystalline, amorphous 
  • Crystal Structure
  • Basis
  • Lattice: Bravais Lattice vs. Non Bravais Lattice 
  • Unit Cell, Primitive Unit Cell, Wigner-Seitz Unit Cell
  • Crystal symmetry 
  • Miller Indices      


Review of quantum mechanics: 
  • Wave-particle duality 
  • Time-independent Schrödinger Equation 
  • Probability densities 
  • Operators 
  • Properties of Eigenfunctions and Eigenvalues 
  • Time-Dependent Schrödinger Equation 
  • Free Particle, Particle in a Box, Quantum Wells, Tunneling




Energy Band Theory:
  • Crystal potential energy structure
  • Bloch theorem
  • Near free-electron model
  • Kronig-Penney model
  • Tight binding model
 


Reciprocal lattice, Brillouin zone, and Effective mass:
  • Brillouin zone and Zone folding
  • Particle motion, Group Velocity, Effective mass
  • Carrier and Electron and Hole Current



Bandstructure in 3D for real materials:
  • E(k) diagram for Si, Ge, GaAs
  • Direct and Indirect Bandgap Semiconductors
  • Constant Energy Surfaces
  • Effective Mass in 3-D

Density of states:
  • Density of states in k-space (periodic/complete reflecting boundary condition)
  • Density of states as a function of energy for free space
  • Specific materials, such as Si, Ge, and GaAs

Phonons:
  • Vibrations in Crystals (Longitudinal/Transverse)
  • Dispersion Relation for Elastic Waves (Brillouin Zones)
  • Two atoms primitive basis: optical phonons and acoustic phonons
  • Quantization of phonon modes

Optical absorption in semiconductors/photonic crystals:
  • Joint density of states
  • Absorption in direct band gap semiconductors
  • Absorption in indirect band gap semiconductors

Binary model systems:
  • Thermal Physics
  • Binary Model Systems
  • Gaussian Approximation to Binomial Coefficients



Temperature and entropy:
  • Probability, Average Values
  • Ensemble Average, Thermal equilibrium
  • Concept of Entropy and Temperature


Laws of thermal dynamics:
  • Entropy and heat flow
  • Laws of Thermodynamics


Helmholtz free energy, chemical potential:
  • Boltzmann factor
  • Partition function
  • Helmholtz Free energy
  • Chemical potential and Diffusive Equilibrium


Applications of chemical potential, semiconductor heterojuction:
  • Chemical Potential and Entropy
  • Chemical potential and potential energy change
  • Gibbs sum and Gibbs factor
  • Fermi-Dirac Distribution Function

Fermi-Dirac distribution:
  • Fermi-Dirac distribution
  • Fermi Gas in three dimensions: ground state and specific heat
  • Classical carrier distribution in semiconductors
  • Donors and Acceptors in Semiconductors
  • Law of mass action
  • Fermi level in intrinsic semiconductors

n-typed and p-typed semiconductors:
  • Extrinsic semiconductors
  • Fermi levels in extrinsic semiconductors
  • Degenerate semiconductors






Bosons, Planck/Bose-Einstein distribution:
  • Example for calculating the Fermi level
  • Dopant ionization consideration
  • PN junction
  • Concept of quasi Fermi level




Application of Bose-Einstein distribution, thermal photon populations::
  • Planck distribution
  • Bose-Einstein distribution
  • Applications of the Planck/Bose-Einstein distribution:
  • Thermal radiation
  • Johnson/Nyquist noise  



Recombination‐Generation:
  • Non‐equilibrium systems
  • Indirect vs. Direct Band gap
  • Recombination generation events
  • Direct Band‐to‐band Recombination
  • Direct Excitonic Recombination
  • Indirect Recombination (Trap‐assisted)
    Carrier Capture Coefficients
    SRH Recombination
  • Auger Recombination (Inverse Impact Ionization)
  • Effective Carrier Lifetime
  • Surface states




Carrier Transport:
  • Scattering mechanisem
    Ionized inpurity scattering
    Phonon scattering
    Matthession rule
  • Electron/Hole mobility
  • High field effects in mobility
  • Hall Effect
  • Diffusion
  • Continuity equation
  • Boltzmann Transport equation  




A:
  • b
  • c
  • d
  • e
  • f  





Same/Ralated Courses at Other Schools!


Useful Links: